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Abstract:  Walls divide, bridges unite.  This idea is applied to devising a vocabulary

suited for the study of higher dimensions.  Points are connected,  solids divided.  In

higher  dimensions,  there  are  many  more  products  and  concepts  visible.   The  four

polytope  products  (prism,  tegum,  pyramid  and  comb),  lacing  and  semiate  figures,

laminates are all discussed.  Many of these become distinct in four to six dimensions.
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1. WALLS AND BRIDGES

Consider a knife.  Its  main action is to divide solids into pieces.   This is done by a

sweeping action, although the presence of solid materials might make the sweep a little

less graceful.  What might a knife look like in four dimensions.  A knife would sweep a

three-dimensional space, and thus the blade is two-dimensional.  The purpose of the

knife is to divide, and therefore its dimension is fixed by what it divides.

Walls divide, bridges unite.  When things are thought about in the higher dimensions,

the dividing or uniting nature of it is more important than its innate dimensionality.  A

six-dimensional blade has four dimensions, since its sweep must make five dimensions.
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There are many idioms that suggest the role of an edge or line is to divide.  This most

often happens when the referent dimension is the two-dimensional ground, but the edge

of a knife makes for a three-dimensional referent.  A line in the sand, a deadline, and to

the  edge,  all  suggest  boundaries  of  two-dimensional  areas,  where  the  line  or  edge

divides.  We saw above, the sweep of an edge divides a solid.

In the proposed terminology, the margin takes on the role of a dividing edge.  Face and

surface suggests a bounding nature, and so are taken to refer to containing a solid: a

four-dimensional face has three dimensions.  A margin angle is the term that replaces

the dihedral angle. In four dimensions, dihedral angle is about as relevant as a corner

angle in three dimensions. 

The  decision  to  use  the  walls  and  bridges  notion  is  more  that  certain  words  have

acquired powerful  meanings that may lead to confusion in higher dimensions.   It  is

probably more important to keep the dividing nature than the two-dimensionality, of a

plane  or  a  face.   But  I  do  consider  later  on  the  style  of  why  a  dimension-based

terminology is also important to keep.

The vertex-edge and face-margins are topological duals in every way.  Where one can

do  things  in  one,  there  is  a  corresponding  dual  for  the  other.   Among  the

mathematicians, the vertex-edge set makes for the simplest constructions: all vertices

are essentially alike, and edges have only length.  For those who study crystallography,

the face-margin set appears to make the greater sense.  Many of the crystals occur in the

shapes of Catalan figures. 

Polytopes carry the names referring to their faces.  Yet we deal with vertices and edges.

In any case, there is an asymmetry of names that needs to be corrected.   My endeavours

into this field have been largely to address  this asymmetry,  largely by filling in the

holes.
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The starry polytopes are made by face-extension. However, the usual process of finding

them is by creating new faces in existing vertices of the dual.  While the two are the

same process, the process is converted from a face-centric process to a vertex-centric

one.   Faceting  and stellation are  dual  processes.   With faceting,  we keep  the same

vertices and span new edges, …, faces.  With stellation, we keep the face planes, and

find new margins ,…, vertices. The faceting or stellation is regarded as less extreme

when a greater number of elements are kept. For example, a first-margin faceting keeps

all the margins, and span new faces.  A great dodecahedron is a first-margin faceting of

the icosahedron.  The dual is that a stellated dodecahedron is a first-edge stellation of

the dodecahedron: a complete dual in every way.

The method used by Jonathan Bowers in his program to discover the uniform polychora

is to use first-edge facetings.  In essence, an army consists of all the polytopes that have

the same vertices.   This  divides  into regiments,  which  share  the  same vertices  and

edges.  This descends into companies, and so forth.  The process corresponds to vertex-

facetings,  first-edge facetings, and so forth.  A corresponding dual would be to have

face  stellations,  first-margin  stellations,  and  so  forth,  forming a  navy of  polytopes.

Stellations are more complex, because unlike vertices, faces do change.

We can talk of inner stellations, or outer facetings.  An inner faceting has the same face-

planes as the figure, but lies inside it.  The innermost stellation is the core.  Likewise,

the outermost faceting is the hull.  The core and hull are both convex.

The polytopes that form a first-edge faceting or regiment share a common set of vertices

and edges.  One can talk of a first-edge subfaceting, where the vertices and edges form a

subset of the original set.  A pentagonal antiprism is a first-edge sub-faceting of the

icosahedron.  Just as with a set being contained in a superset, one can also talk of super-

facetings and super-stellations.   An icosahedron is a superfaceting of the pentagonal

antiprism: it has all the vertices of the former, and two additional ones.

1.1 The Rhombus

A thread is a sequence of polytopes, one from each dimension, that share some common

property.   The  classic  example  is  line,  square,  cube,  tesseract,  …  These  form  a

sequence of measure polytopes.  But threads can cross and converge, especially in the

lower dimensions.
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The rhombus is a relatively useful polygon.  It has four equal sides, and a pair of axies

bisecting at right angles.  What ought be the polyhedron that should inherit the spirit of

the rhombus in three dimensions.  I have three different words for the three different

qualities that the rhombus gives, all based on the stem tegum.

A rhombohedron is a figure that continues the equal sides of the rhombus.  Where in

two dimensions, it is a square, stretched on its long diagonal, in three dimensions the

cube gets stretched in a like manner.  While the rhombohedron tiles space, and is useful

in crystallography, the general class it belongs to I call antitegums.  The rhombohedron

is a triangular antitegum.  Antitegums are the dual of antiprisms.

A second element is the notion of crossing axies.  In three dimensions, one can have

three crossing axies, giving rise to a kind of isoface octahedron.  This is the dual of the

general rectangular prism.  We might easily call it a rhombic octahedron, but the name

selected for this is  tegum.  The dual of any prism product is a tegum product of the

duals.

Kepler named a number of uniform figures and their duals with the name rhombo-, eg

rhombocuboctahedron.  When we consider there is no rhombus in three dimensions, we

might ask which of the above two meanings is meant.  The rhombic dodecahedron tells

us what is going on.  The diagonals of its rhombic faces are the edges of the cube and

octahedron.  In four dimensions, the edges of the figure cross the margins or polygons

of the dual.  The resulting faces would be a tegum product of matching dual elements.

This gives a surtegum, or surface-tegum figure.

1.2 The view from six dimensions

The terminology I  have  selected  for  higher  dimensions is  tested  in  six  dimensions.

Many of the different threads become quite distinct in six dimensions.  Also, in six to

eight dimensions, there is a fascinating series of polytopes discovered by Th. Gosset.  I

could have set the thing up as the view from eight dimensions, but I can’t visualise that

many dimensions.

Many useful  distinctions become more apparent  in six dimensions.   This is because

there are a larger number of intermediate dimensions.  There are four different products,

one for each of the infinite regular polytopes.  Of these four, two are distinct in four

dimensions, and the other two have to wait until five dimensions to become distinct.  In

three dimensions, we can largely ignore these.
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At the moment, I am writing a polytope glossary, called the Polygloss.  This sets down a

large vocabulary where the terms are largely defined to be consistent across the higher

dimensions.  It only goes as far as eight dimensions, but the general pattern is there.

1.3 Around and Surround

In  the  higher  dimensions,  these  terms  are  used  to  define  quite  distinct  meanings.

Consider a three-dimensional subspace in six dimensions.  A figure that is solid in the

subspace is both surrounded and arounded by different kinds of spaces.

Surrounding happens in the space that the thing is in.  When one surrounds a fort, one

creates a barrier to ground transport to it.  

 Arounding happens in the space perpendicular the surface.  When one dances around

the maypole, the dance is in a circle that encloses, but does not include, the maypole.

The maypole is a one-dimensional affair, but the dance happens in a two-dimensional

space that crosses it at one point: the ground.

The prefixes chosen to suggest surround and around are sur- and ortho-.  So things that

have sur- in them happen in the space bounding a figure, and ortho- suggests a space

entirely perpendicular to it.
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In and out happen across a surface.  Any shape that has a boundary potentially has an

inside and an outside.  An enclosure made on the ground exists essentially in the plane

of the ground, and therefore has an inside and an outside.  However, birds on the wing

would not observe this particular distinction.  A shape drawn on a four-dimensional

plane of six dimensions has an interior and an exterior in very much the same way as

when it is solid in four dimensions.  

1.3 Hyperspace, Slabland, and many products

Hyperspace means space over solid.  It  is useful to assume higher dimensions, some

mathematical theorems rely on this assumption.  But to apply it to four dimensions or

any other particular dimension would lessen this utility.  Calling a tesseract a hypercube

is like calling a square a hyperline.   

Slabland is an approach to higher dimensions.  One imagines that in a two-dimensional

world acquires thickness, like a pancake.  The cartoon character Gumby, who resembles

a man cut out of a layer  of green foam sheeting, would not look out of place here.

Slabland is a useful concept because we can make the transition from one dimension to

another by inventing thickness to interact.  The more common form is Filmland, where

we are paper-thin film characters that blow around in a higher dimension.

The Slabland idea is also important because it can convert uniform polytopes into slab

prisms in the higher dimension: a hexagon becomes a hexagonal prism.  One could then

have the same sequence number applied both to the polytope and its  prism.  In  my

series, I give the number 7 to a dodecahedron, and 7 to its four-dimensional prism.  The

first in the series is the ultimate slabland device: the square, cube, tesseract, &c.

Slabland gives way to the Cartesian product.  The word prism means offcut, such as one

might  cut  off  a  length  of  wood.   Imagine  cutting  a  hexagonal  pole  into  hexagonal

prisms.  In terms of three dimensions, one can regard a hexagonal prism as being a

hexagonal offcut  from a layer,  or a short  height  off a long column, or the common

intersection.  In terms of co-ordinates, a hexagonal prism projects onto a hexagon in two

dimensions, and its height into the third.
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In four dimensions, the prism product becomes distinct.  What this means, is that there

are  prisms  that  do  not  come  from  Slabland.   One  could  place  a  hexagon  in  two

dimensions, and a pentagon in the other two, and consider their common intersection.

Another product that becomes distinct in four dimensions is the  tegum product.  This

makes the duals of prisms, but has its own identity.  The original word proposed for it

was (tent), but somehow tabernacle is already used.  Tegum means to cover.  The sense

is that the surface of a tegum covers its axies like a tent covers its pegs.

The land of tegums is Bouyland. The shapes of the previous dimensions are converted

into bipyramids that float around the surface like bouys at sea.  A hexagon becomes a

hexagonal bipyramid or tegum.  The first shape of bouyland is the square, octahedron,

16-choron, &c  

To make a distinct tegum, we need to find something that distinct from Bouyland.  This

is done by replacing squares or higher with some other figure from the same dimension.

Replacing  a  square  in  the  octahedron  by  a  pentagon  makes  the  octahedron  into  a

pentagonal bipyramid or pentagonal tegum.  A 16-choron, taken as the product of two

squares, can become a pentagon-hexagon tegum, with a pentagon in one pair of axial

dimensions, and a hexagon in the other two.  The surface consists of thirty disphenoid

tetrahedra.

Tegums can be used as a measure unit also.  The ratio of a tegum unit to the prism unit

is in the ratio of one to the factorial of the dimension.  In five dimensions, the prism unit

is 120 times greater than the tegum unit.  A tritegmal foot refers to the volume of an

octahedron, the diameter of which is a foot.  The solid angle of a simplex, measured in

tegmal radians, gives a value between one and the square root of N/e.

Fireland makes a shape into pyramids.  Our hexagon becomes a hexagonal pyramid.

The first member of these is a series point, line, triangle, tetrahedron, pentachoron, …

The first distinct pyramids are found in five dimensions.  This is where we can replace

pairs of triangles of the hexateron with other polygons.  Unlike prisms and tegums, the

pyramid adds a dimension for every application: this becomes part of the height.  So

where the tegum and prisms are the products of lines (diagonals or edges), the pyramids

are a product of points (apexes or vertices).
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In five dimensions, we have the hexateron being seen as a triangle triangle pyramid, and

we can replace the triangles  by any other polygon.   We could have,  for example,  a

pentagon  hexagon  pyramid.   A  slice  through  the  altitude  gives  rise  to  a  pentagon

hexagon prism.  When the thing is projected onto four dimensions down the height, the

result is a pentagon hexagon tegum.

The last land is Layerland.  This does not apply to polytopes but to Euclidean tilings,

and by extension, to horotopes.  The way this land works, is that it replaces a hexagonal

tiling by a whole stack of layers of hexagonal prisms.  The first member is a member of

tilings of  measure  polytopes:  quartics,  cubics,  tesseractics.   A tiling of squares  is  a

three-dimensional polytope, acting in the role of a two-dimensional honeycomb. 

The comb product is the general product for layerland.  The first comb-products that

don’t  come  from  layer-land  are  five-dimensional  polytopes,  which  appear  as  four-

dimensional tilings.  In this, we treat the tesseractic as the comb product of two quartics

(square tilings), and replace each by other two-dimensional tilings.  One could have a

tiling of triangle-hexagon prisms, or a trilat hexlat comb.

In hyperbolic space, the members of layerland do not appear as tilings but as polytopes

with a proper curvature, and a non-planar margin-angle.  However, the comb product

still applies.  In  hyperbolic space, the trilat {3,6} is a three-dimensional polyhedron,

albeit  with  infinite  radius.   The  comb-product  {3,6}{6,3}  gives  rise  to  a  five-

dimensional polytope: that is, it looses a dimension.

One can do comb-products over polygons as well.  This gives rise to only the Cartesian

product of the surface.  Where a pentagon-hexagon prism has eleven polyhedral faces,

the corresponding comb is just the mat of thirty squares that divide the pentagon prisms

from the hexagon prisms.

Circles and spheres can participate in all of the above products.  For example, a cylinder

is a circular prism.  One can talk of bi-circular prisms and tegums, or a glomohedral

prism (a 3d sphere × line prism).
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The four products described above give rise to a rather attractive over-all symmetry.

Adding a ‘1’  to various ends of  the surtope equation of the four classes  of regular

products  converts  these  into  power  expressions.   The  same  pattern  makes  for  the

generalised  product.   For  example,  a  tetrahedron  has  4  faces,  6  edges,  4  vertices.

Adding 1 to each end makes 1,4,6,4,1 or 1,1 to the fourth power.  We see that if we add

ones to both ends of any polytope before multiplying, we get the consist of the product.

For example, a square is 1,4,4,1  (4 edges, 4 vertices), and a point is 1,1.  The product is

1,5,8,5,1.  The square pyramid has 5 faces, 8 edges and 5 vertices.

The family of cubes or measure polytopes are powers of 1,2, the prism product adds a 1

only to the front of the sequence.  A pentagon prism is 1,2 × 1,5,5 or 1,7,15,10.  It has 7

faces, 15 edges and 10 vertices.  Measure products preserve vertex-uniformity.  That is,

if two figures are vertex-uniform, so is the product.

The cross polytopes are powers of 2,1.  The tegum adds only to the end of the product.

A pentagon tegum is the product of 2,1 and 5,5,1.  This gives 10,15,7,1.  This has 10

faces, 15 edges and 7 vertices.  The tegum product preserves the face-uniformity.  That

is, the product of two iso-face polytopes, like the Catalans or the Platonics, give rise to

another isoface figure.

The family of quartics, cubics &c are powers of 1,1.  Here the 1,1 represents an infinite

sided  polygon,  and  adding  1  to  either  end  is  not  going  to  make any change.   The

numbers are proportional, in any case.  None the same, the pentagon-hexagon comb is

the product of 5,5 and 6,6, giving 30,60,30.  This comb product is a mat of squares in

four dimensions, with 30 faces, 60 edges and 30 vertices.

1.4 Polytopes and Mounting

A dodecahedron has twelve faces.  There are many different kinds of dodecahedra, all

of which are bounded by twelve faces.  The sense of -hedron is then a mounted polygon.

This  particular  notion has  been preserved  into the higher  dimensions.   The stem is

derived from a Greek word meaning seat: it occurs also in cathedral church, meaning

the church with the overseeing, or bishop’s, seat. 
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The idea  has  been  progressively  extended  into  higher  dimensions.   A  -choron  is  a

mounted polyhedron.   The sequence continues to 3d choron,  4d teron, 5d peton, 6d

exon, 7d zetton, and 8d yottons.  The names from four to eight dimensions are borrowed

from metric prefixes: these are meant to stand beside numbers without confusion.

A surtope is a surface polytope, or polytope mounted on the surface.  Just as polytope

generalises the series point, line, polygon, polyhedron, … the surtope generalises the

sequence vertex, edge, …, margin, face, cell.  A cell is a solid surtope, such as a tiling

might have.

When a polytope is mounted onto a second polytope, they share the interior of some

surtope.  When this happens, the two must also share the surtopes of the shared interior.

That is, you can’t mount polyhedra by placing the square face of one onto the triangular

face of another.  The join must match in shape and size.

The term polytope tends to get overused, more because there are not names for things

that are not polytopes.  It is as important to consider these as well.  The style selected

for the Polygloss is to use the concept of ‘polytopes mounted with some result’.  These

are  done  by  a  series  of  Latin-and-Greek  stems.   We have  already  seen  the  stems

meaning the likes of “mounted 4d polytope”.  We now look at the effects.

A polysurtope means many surtopes.  It is a collection of mounted polytopes without

any sort of definite aim.  These might be used in topological maps, for example. If every

surtope belongs to a polytope of the same dimension, one might call it a polysurhedron.

A polyface is a thing made out of bounding polytopes: for example, a net or partially

made model is a polyface.  A polycell is several solid polytopes connected together. 

An  orthosurtope means  the  surtope  that  is  orthogonal.   The  term is  applied  to  the

surtope of the dual, drawn in the space around, or orthogonal to, the original surtope.

The dual of the orthosurtope is the surtope figure, a concept that generalises the vertex

figure.    This  is  topologically  the  same  as  the  intersection  of  the  surface  with  the

orthosphere.
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An edge-rectified polytope has its vertices in the centres of the edges of the polytope it

rectifies.  A cuboctahedron is an edge-rectified octahedron.  The dual of rectification is

surtegmation.  An edge-surtegmated octahedron would create new faces, that are the

tegum-product of the edges of the octahedron, and the margins of the cube.  

A polytope  means  many mounted polytopes. There is no consistent rule for it, but the

sense is some kind of closure, either a volume or margin completion.  Different authors

have definitions for it.  In any case, it is hoped a wealth of new words might provide

alternatives, and let polytope find a proper home.

An apeirotope means ‘mounted polytopes without end’.  The sense taken here is that the

polytopes cover all of a space where they are solid.  A tiling of hexagons, covering all

of two dimensions, would be an apeirohedron.

An apeirotope can be treated as the surface of a hyperspace polytope.  The faces of this

hypertope  become  the  cells  of  the  apeirotope.   Margins  become  walls.   The

hypersurface becomes a surcell.

A  planotope has plane-mounted polytopes.   While this is essentially the same as an

apeirotope, it also has a volume.  A tiling of hexagons and the half of all space it divides

makes a planohedron.

An anglutope is a ‘mounted polytope as a corner’.  A single vertex of a dodecahedron

appears  as  three  different  corners,  one  for  each  pentagon.   The  idea  of  anglutopes

generalise this.  It works in both directions: a pentagon has five corners, and a vertex

has three  pentagon-corners.   Anglutope  conveys  the sense  of  incidence,  or  surtopes

belonging to surtopes.   A vertex may have incident faces,  and such faces  would be

described as the vertex’s anglufaces.  One might call an incidence matrix an anglutope

matrix, with columns representing the surtopes, and the rows representing the incident

angulotopes.
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A horotope is polytopes mounted on a horosphere or sphere that has an infinite radius.

In Euclidean geometry, this is a flat surface.  In hyperbolic geometry, this is a kind of

sub-space that has Euclidean geometry.  A tiling of hexagons, three to a corner, would

form a horohedron.  The term horotope is used to convey the sense of Euclidean surface

geometry in both Euclidean and Hyperbolic geometries.  A horosurtope is a surtope that

is centred on a horopoint, or point on the horizon.

A  bollotope is a polytope that follows a bollosphere, or hyperbolic radius sphere.  A

bollosphere  is  also  called  a  pseudosphere  or  equidistant  curve.   The stem  bollo- is

derived from hyperbolic, in much the same way that bus comes from omnibus.  Pseudo

means false.  It already has active use in this meaning, and it does not well to overload it

with the sense of hyperbolic.  An equidistant curve is just a curve equidistant from a

straight line.  A line of latitude is also an equidistant curve:  it  is equidistant from a

straight equator.

A glomotope is a polytope mounted to make a globe. What this does is makes a single

face wrap around to form a sphere.  A glomohedron is the shape we call in 3d a sphere.

In higher dimensions, there are 4-spheres or glomochora, 5-spheres or glomotera, and so

on.  Sphere can then refer to a solid sphere.  The glomotopes participate in all of the

polytope products. Even though some do not hold them to be polytopes, it is useful to

treat  them as  polytopes  just  the same.   They even have their  own Schlaffli  symbol

allocated.  A circle is {O}, a sphere is {O,O} and so on.  A cylinder would be {}{O}, or

a  circular  prism.   When  a  Wythoff  style  construction  is  applied,  this  translates  to

shortening the axis.  A prolate ellipsoid would become {;O,O;}, meaning the first two

axies are equal, and shorter than the third, while an oblate ellipsoid is {;O;O}, where the

first axis is shorter than the other equal pair.

1.5 Wythoff, Stott and Dynkin

Wythoff and Mrs Stott are both associated with discovering the great bulk of uniform

polytopes, more by fait of having the right notion, and filling in the holes.  The magic

lies in the notions.

Wythoff relied on mirror-edge polytopes, and semiates to fill in the snubs.  A mirror-

edge  polytope  is  one  where  the  ends  of  every  edge  are  images  of  each  other  in  a

bisecting mirror.   The interesting thing is that edges do not have to be equal:  every

rectangular prism is a mirror-edged figure.  
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Given a mirror symmetry group, one can move the vertex around in the kaleidoscope,

and look at the resulting figure.  In three dimensions, the kaleidoscope has three sides,

three corners  and the interior.   This gives  up to seven mirror-edge figures  for  each

group.  These seven are completely realised in the icosahedral and octahedral groups,

but the tetrahedral gives only two.

Mrs Stott’s construction consists of moving surtopes inwards and outwards.  This has

the potential to create new faces.  Imagine a cube covered by an elastic skin.  If we grab

the faces, and pull them out (keeping the same size), the old edges and vertices will give

rise to new faces.  We can do the same with any combination of vertex, edge and face,

to give rise to seven figures per core figure, as before.

Combining the two gives rise to a fascinating idea.  Consider the mirror-group as some

kind of bounding plane, rather like an octant of the Cartesian system.  This is in fact, the

case for the group {2,2}.  When we move a point around, it moves around in all of the

other ‘octants’ as well, as if reflected in the walls. Mrs Stott’s construction corresponds

to moving the vertex parallel to an axis.  The resulting axial system can be treated as a

coordinate system, and the vertex as the apex of a position-vector.

The coordinates are set, so that a unit along an axis corresponds to unit elevation off the

opposite face: this makes the points like (1,0,1) correspond to a mirror-edge polytope of

edge 2.  The length of this vector corresponds to the circum-diameter of the unit-edged

figure.

In a sloping axis system, the way one finds the length is to use a matrix-dot.  This is

done in the same way as a dot product, but one of the two vectors is pre-multiplied by a

matrix.   The matrix  used for  this calculation is  the Stott  matrix,  of  which we shall

comment further.  Stott matricies can be used for hyperbolic groups as well, this will

continue  to  give  the  edge  of  the  resulting  hyperbolic  tiling.   The  value  given  is

2sinh(R/2L), where R is the radius of space, and L is the true length of the edge.

Dynkin’s  contribution  was  to  provide  a  multi-dimensional  notation  for  Wythoff’s

mirror-edge construction.  The much-used Wythoff  symbol  assumes that  a mirror is

opposite an angle, a feature not replicated in higher dimensions.
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The Dynkin symbol is a graphical affair, not suited for use in running text.  It is very

useful for the higher dimensions.  One of the first things I did with it  is to set it  to

running text, and greatly extend the versatility of it. 

We can construct the Dynkin symbol in terms of a matrix.  The diagonal elements of the

matrix are set to 2, while the value for D(i,j) is -2cos(ij).  The product of the Dynkin and

Stott matrix is 2 I.

The Dynkin symbol represents mirrors by points (nodes), and the angles between these

mirrors by edges (branches).   Branches are only drawn if the angle between them is

something other than a right-angle.  The most common drawn branch is a ‘3’ branch:

the convention is that drawn unmarked branches reflect at 60°. 

For a regular figure, the Dynkin symbol is a chain.  This is easy to represent in text,

because a chain can be made to lie down.  For example, @--3--o--5--o would represent

an icosahedron.  But the dashes are entirely superfluous, and one could write @3o5o or,

x3o5o.  Since this  also corresponds  closely to the Schlafli  symbol,  one could write

{;3,5,}.  

Not all of the groups derive from regular polytopes.  The way around this is to make the

symbol  represent  a ‘trace’,  or pseudo-regular  figure.   This is  done by making some

branches connect to a node further back or further ahead.  In oGoEo3x3oAoBoCo, all of

the branches connect the outer o node to the x node.  The B branch is a ‘third-subject

node’.  A branch connects a subject to an object.  The subject of the B branch is x, the

object is the o following the B.  Since the x node is three back, it is a third-subject.

These branches suffice to discuss all the hyperbolic groups where the simplex has finite

content.

The special node z is used to indicate a return to the front of the chain.  In the trace, it is

still counted separately for the counting to find the subjects and object nodes.  A group

A5, represented by a pentagon of branches, might be written as o3o3o3o3o3z.  In the

Schlafli symbol, it appears as a colon, eg {3,3,3,3,3:}. 
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In the interests of symmetry, a mirror-margin figure is one where every margin lies in a

mirror-plane.  This is represented by the m node.  Where an m node appears, the wall of

the kaleidoscope is part of some margin.  The neat feature is that one can dualise by

swapping x and m.  A cuboctahedron is o3x4o, the dual is a rhombic dodecahedron

o3m4o.  

Although figures can be both mirror-edged and mirror-margined, the correct style is to

show only one.  A cube is both x4o3o and o4o3m, but not x4o3m.  The reason for this is

that when applied across the direct product &, the x node implies a prism product, and

the m implies a tegum product.  So x4o3o&x5o is a prism product of a cube and a

pentagon, while o4o3m&o5m is the same cube and pentagon in tegum product. 

Circles and spheres can be treated in the same way as well.  A circle is xOo, the higher

dimensions effected  by adding further  Oo segments.   So an xOoOoOo looks like a

polychoron, and has O segments, so must be a glomochoron, or 4-dimensional sphere.

Something like xOo&x is a circular prism, or cylinder.  In four dimensions, we can have

xOo&x5o, a circle-pentagon prism.

1.6 Laceland – Antiprisms and Antitegums

Kepler  described  among  the  uniform  figures  an  infinite  family  of  figures  called

antiprisms.  These are a kind of prism, where the edge of one base corresponds to the

vertex of the other.  Triangles, not squares, form the sides.  From higher dimensions,

two important threads pass through here.  One of these makes the pentagonal antiprism

into a semiated decagonal prism: that is, what one gets by removing alternating vertices

of a decagonal prism.  Semiation splits further into finer threads, so it is useful to deal

with semiates by new names.

An antiprism resembles some kind of drum, where the top and bottom are tied together

with lacing.  In higher dimensions, the name of antiprism is allocated to a similar kind

of  prism-like  thing where  the  top  and  bottom bases  are  duals.   The  side  faces  are

pyramid products of surtopes and the corresponding orthosurtope.
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The idea of different-style top and bottom can be taken further.  One can do this sort of

lacing to generate in three dimensions, prisms, antiprisms, pyramids, and cupolae.  The

notion is that the surtopes of one face must systematically descend into surtopes of the

other.

One can use two Wythoff mirror-edge figures from the same symmetry as the bases.

When this is done, the side faces potentially appear at each of the nodes, being the lace-

prism formed by all of the remaining nodes.  Lace-prisms are useful, since the vertex

figure of any Wythoff-mirror-edge figure is a lace prism with as many bases as the

figure has maked nodes.

The symbol for a Wythoff lacing-prism is to write the top and bottom in sequence, and

apply the &#x sequence at the end.  So a dodecahedron truncated-dodecahedron lacing-

prism combines x5o3o with x5x3o, as xx5xo3oo&#x.  An antiprism is simply the lace-

prism of a figure and its dual: for example, the cuboctahedral antiprism has as the top,

o3x4o and as a base, o3m4o.  The lace-prism is oo3xm4oo&#x.

For convex figures, we can describe a lace-prism as the convex hull, when the two bases

are placed in parallel planes, sharing a common centre-perpendicular.

The dual of a lace-prism is a lace-tegum.  This figure has its own description outside of

saying ‘dual of’…  One places the two bases, and constructs pyramids, so that the apex

of one base is in the centre of the other.  The lace-tegum is the common intersection.  If

the  resulting  pyramid  is  not  solid,  then  it  is  made  solid  by  extension  in  the

perpendicular.   For  example,  if  a  pyramid  is  only  in  the  x-y  plane,  it  is  extended

throughout the values for z by way of a Cartesian product.

The antitegum, the dual of the antiprism, has every surtope an antitegum.  An example

of an antitegum is the measure-polytope, where every surtope is a simplex antitegum:

lines, squares, cubes, tesseracts.  But this holds true for all antitegums.  This is because

each face of an antitegum is formed by the antitegum on the face and the dual of the

face.
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An interesting figure one can create is an antitegmal cluster.  Take any polytope, for

example a dodecahedron.  Each of its faces forms a pyramid radiating from the centre of

the figure.  We use each of these as one of the two lacing-pyramids.  The second lacing

pyramid  is  formed  over  the  surface  of  the  figure.   This  replaces  each  face  by  its

antitegum.  The inwards-pointing faces are not seen, and all that is seen is a apex of

antitegums forming the second lacing-pyramid.  The axies of the exposed faces connect

the vertices of the dodecahedron with the vertices of the icosahedron.  The antitegmal

cluster of a figure is the same as that of the dual, and the whole surface is bounded by

antitegums.

The  most  interesting  of  the  antitegmal  clusters  is  the  one  formed  on  the  simplex.

Complete with the innards, it is what happens when a measure-polytope is squashed so

that the long axis is zero.  The shape tiles space with relatively high efficiency, the dual

tiling being one of a 60-degree rhombic tiling with additional planes perpendicular to

the long axis.

An example of this is the digonal antitegum xo2ox&#m.  Suppose the axis runs in the z

direction.  We construct  a line pyramid (or triangle)  in the x-z plane, and a second,

inverted line-pyramid in the y-z plane.  Were these not completed, all we would see is

the common intersection in the z-axis.  So the line-pyramid in the x-z plane exists for all

values of y, and the y-z plane exists for all values of x.  The common intersection is the

space held between two vees of planes, which form pairs of faces of the tetrahedron.

The  dual  of  a  lace-prism  is  the  lace-tegum,  in  terms  of  the  symbols,  a  matter  of

swapping x and m where they occur.

Lace-prisms and lace-tegums can have any number of bases.  When one projects a lace

prism perpendicular to all of its bases, the bases appear as the vertices of a simplex.

The  base  and  apex  of  a  normal  pyramid  would  project  as  the  ends  of  the  line

representing the altitude.  Lacing-edges would project as edges of the altitude simplex,

one for each kind of lacing.  An example of a three-based lace-prism is oxx&#x.  This is

a square pyramid. The three bases are the apex and the north-south edges of the base.

The east-west edges, and the sloping edges are different sets of lacing.
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Laceland can be used with tilings as well.  Although prism-products in general can not

be applied to bollotopes (hyperbolic type polytopes), we can still consider lacing layers,

either between the same, or different bollotope surfaces.  For example, one can make a

layer  of triangular prisms by xx3oo8oo&#x.  One can fill laminatopes with laceland

style fillings.  Laminatopes are discussed further on.

The vertex figure of any Wythoff mirror-edge figure is a lace-prism.  It is quite possible

to discuss the vertex figure of x3o4o3x in terms of a lace pyramid.  It would become

xo4ox&#x.  The unmarked nodes form the transverse or base symmetry.  The marked

nodes correspond to the apices of the altitude.  Each apex is connected separely to the

bases.  

For example, the x3x3o3o3x3o is a six-dimensional figure, and has a five-dimensional

vertex figure.   The transverse  symmetry is  o3o&o.   The altitude has  three  vertices,

forming a triangle.  Each vertex of the altitude connects to the nodes differently.  The

first has no connection, ie o3o&o.  This makes a point.  The second connects to form a

triangle, x3o3&o.  The third connects as o3x&x or triangle-prism.  The resulting lace-

prism then  is  oxo3oox&oox&#x.   We see  that  this  figure  has  a  three-dimensional

transverse, and a two-dimensional altitude, all together, five dimensions.

The dual of the vertex-figure is the face of the dual.  We write straight away, the face of

m3m3o3o3m3o as omo3oom&oom&#m.  This three-based lace-tegum is constructed in

the same way as the two-based versions above, but is the intersection of three pyramids.

1.7 Semiates

The  idea  of  semiates  derives  from  removal  of  alternate  vertices  of  a  figure.   A

tetrahedron is a half-cube, for example.  Semiation can be applied to higher values than

two.  For example, the semiated pentagon-pentagram prism is a regular figure called a

pentachoron.  What happens is that one reduces the vertices of a pentagon-pentagram

prism so that only one-fifth of the vertices remain.  

Semiation  becomes  more  complex  when  there  are  more  axies  to  pick  from.   This

happens for the first time in six dimensions, where we see the threads on step-prisms

and mod-prisms separate.
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The notion behind semiates is that one can number the vertices systematically.  When

one takes a product of two or three such numbered polytopes, one forms an array (p,q)

or (p,q,r).  The idea of semiation is that one removes all those p,q which do not agree to

some further restriction.  For example, one might only want p and q equal, or the sum to

be a multiple of some value.  If the vertices are kept, the result is a prism.  If the face-

planes are kept, the result is a tegum.

In four dimensions, one finds the polygon-polygon prism.  The vertices of a polygon

can be numbered from 1 to p.  In a polygon-polygon prism, this gives a set of p² points,

running from 1,1 to p,p.  What would happen, if we make these keep in step?  The result

is a large polygon.  Instead of keeping in step, we can rotate one twice or x times faster

than the other.

When p is a sum of two squares, such as 5 or 13, interesting things happen.  The 1,2

bipentagon step prism is nothing more than the pentachoron.   The 2,3 bi-{13} step

tegum becomes a rather interesting polychoron,  bounded by 13 identical  sides.   The

matching step-prism has at least four vertices equidistant from the central one.

In six dimensions, the triple-product of polygons can be reduced in different ways.  A

step polygon makes everything step together, giving a polypeton with p vertices.  The 1-

2-4 tri-heptagon step-prism is the simplex in seven dimensions.

If one makes one dependent on the other two, for example x+y+z=0 mod p, then one

has  a  polypeton  with  p²  vertices.   For  example,  the  1-2-4  tri-heptagon  mod-prism

contains the vertices of seven separate simplexes, for a total of 49 vertices.

Mod-prisms and mod-tegums get used in tilings as well.  The body-centred-cubic can be

viewed as a step-prism over modulo 2.  In higher dimensions, one can use 3 or 4 in this

place.  The famous gosset-lattice in six dimensions can be constructed as step-prism

over  modulo  3,  of  a  tri-hexagonal  lattice,  where  the  three  numbered  points  are  the

vertices, the centres of the up-pointing triangles, and the centres of the down-pointing

triangles.  The corresponding mod-prism would place additional vertices in the centres

of the cells of the {3,3,3,3,B,3}.  This would make the vertices of o3o3m3o3oBo3o, a

tiling of tri-triangular tegums, 720 to a vertex.
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1.7 Laminatopes

A laminatope is a polytope bounded by unbounded faces.  An example of a laminatope

is a layer.   The main use for laminatopes is to fill  them with cells, and treated as a

module for finding tilings.  In Euclidean space, the layers are usually lace-prisms of

tilings.

For example, xx3oo3oo3z&#x is a layer of triangular prisms.  The xo3ox3oo3z&#x is

an oct-tet layer.  The etchings on both sides of this are x3o3o3z, a tiling of triangles.

One can then stack these in all sorts of systematic orders to produce several different

uniform tilings.  For example, the oct-tet layers could advance, so that xo3ox3oo3z&#x

is stacked on top of oo3xo3ox3z&#x.  This advances the layer one step, producing a

repeat after three layers.  Alternately, one could treat the top surface as a mirror, and

have layers of xo3ox3oo3z&#x and ox3xo3oo3z&#x.  This tiling gives the hexagonal

close pack.

The great search for uniform tilings centre on finding and sifting through the assorted

laminate tilings.  Many of the non-Wythoffian hyperbolic tilings are laminate as well.

1.8 The known uniform hyperbolic tilings

There  are  an  infinite  number  of  uniform  bollohedra.   John  Conway  and  Chiam

Goodman-Strauss  have  some generalised  process  for  locating  these.   Without  their

notation, the process is a relative nightmare, since any given polygon in a vertex-figure

can be replaced by a laminagon, and any two tilings can be merged.
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Of the bollochora and higher, the picture is relatively simpler, although by no means

complete.  There are fourteen finite-extent groups in three and four dimensional tilings.

These and a few star-groups, give rise by Wythoff mirror-edge construction to many of

the known tilings.

There is an infinite family of borromeachora.  For every polygon, except the square, one

can  create  the  matching  borromeachoron.   The  heptagonal  version  has  a  dozen

heptagonal prisms and eight cubes at each vertex.  The vertex figure is an icosahedron,

where the six edges parallel to the axial systems represent a {p}, and the remaining 24

edges  that  form the  eight  triangles  are  squares.   We see  in  the  case  of  the  square

borromeachoron, the result is the {4,3,5}.

There is also a scattered list of others.

One example is a partial truncation of the {3,5,3}.  If  selected vertices and attached

edges  are  removed,  these  vertices  become dodecahedra,  and the icosahedra  become

pentagonal  antiprisms.   The  vertex  figure  becomes  a  tetrahedrally  truncated

dodecahedron, with four dodecahedra and twelve pentagonal antiprisms at a vertex.

A second example is the laminatruncated {4,3,8}.  The normal truncate produces an

x4x3o8o, which has cells x4x3o ‘truncated cube’, and x3o8o.  The x3o8o is not only

infinite, but in this case, a planohedron, when the edges are equal.  The surface can then

be used as a mirror, to fill the whole of space with truncated cubes, 16 at a vertex.  The

vertex figure is an octagonal tegum, formed by rotating an octahedron by 45° around an

axis.
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The other known example is a development on o8o4xAx.  In its primitive state, it has

three kinds of cell: a planotope o8o4x, a curved o8o3x, and a rhombocuboctahedron

x4o3x.  The vertex figure is an octagonal rostrum, a prism with trapezoid sides. The

o8o3x is the right  size and curvature to be part  of an oo8oo3xx&#x, an equilateral

prismatic layer.  This replaces the smaller octagon of the vertex figure with a cap of

eight triangles.  The base is completely flat, and can be used as a mirror.  The resulting

tiling has 16 triangular prisms, and 16 rhombocuboctahedra at the vertex.  The vertex

figure looks like a globe, with octagons forming the equator, the lines of longitude at

45° steps, and a smaller octagon representing 45°N and 45°S.  Without the two poles,

the thing can be made by rotating a cuboctahedron through 45° around the axis through

the square-centres.  One finds {4,8} formed by the squares passing through the great

circles,  and  {8,6}  formed  by  the  octagons  that  can  be  drawn  inside  the

rhombocuboctahedron, on the girthing hexagons of the two inscribed cuboctahedra.

Of four-dimensional tilings, two are known, these are duals of each other.  

The first consists of a tiling of bi-truncated 24-chora o3x4x3o, 64 to a vertex.  The thing

derives from o3x4x3o8o, where there are two infinite cells x4x3o8o, and eight o3x4x3o

at a vertex.  The meeting-angle is smooth, and can be used to reflect  the 45° angle

occupied by the o3x4x3o around.  This fills all-space.  The resulting vertex figure is an

octagon-octagon tegum, where 16 different x4x3o8o can be formed by one octagon, and

an  edge  of  the  other.   The  cell  walls  are  truncated  cubes  x4x3o,  which  form  a

laminatruncated {4,3,8}.  The octagons form an {8,4}, and the triangles a {3,8}.

The dual is a tiling of bi-octagonal prisms, o8x2x8o, with 288 to a vertex.  The vertex

figure is o3m4m3o, formed by placing equal-sized dual 24-chora together, and covering

the lot with the convex hull: 288 disphenoid tetrahedra.  The squares form a tiling of

{4,8},  and  the  octagons  form  an  {8,6},  but  there  is  no  through-passing  of  three-

dimensional cells.

2.  THE POLYGLOSS

The Polygloss is a dictionary designed to encompass all of these concepts and more.

Versions of it are placed on the web from time to time.   One of the problems for it is

that I have more words to describe than I have names for.  There are many unnamed

concepts that scream out for one.
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Many have interim names.  What I describe here as lace-prisms is in the Polygloss as

exotic prisms.  Exotic is used elsewhere.  An exotic polygon has coincident vertices.

The more useful concepts get interim names until they get their final name.  Many of

the others go by the hand-waving names, like ‘thingie’.

For many years, the tegum product was called the octahedral product.  The name does

not fit well, but it was important even for hand-waving, that the thing had its own name.

With tegum fully placed as the dual of prism, it provides a much richer and distinct

name for many other figures.

2.1  The present terminology

The present  terminology reflects  the origins  of  geometry in the real  world.   It  also

carries useful concepts for which I am presently attempting to replicate in the Polygloss

style.  But it is in the main, a lost cause, I should imagine.

The same terminology in two dimensions carries across without modification to three.

This seems to be the basis of some of the alternate vocabularies.  A face, for example is

a two-dimensional element in this style. Other things, like cells bound polychora.

While this provides a seamless conversion between dimensions, what gets lost is the

auxiliary meanings.   Apart  from being a two-dimensional thing, planes divide.  The

present terminology is skewed in favour of the uniting forms. 

Worse still, is the same stem gets divided into diverse meanings.  A face and a facet in

three dimensions, has the same meaning.  In four, a facet might have several faces.  In

the Polygloss, a surface-mounted polygon is a surhedron, always.  It can act as a face or

a margin, but it always is a surhedron.  Face and facet are then counted amongst the

division-terms: a division between inside and outside.
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The primary distinction in the Polygloss is to preserve the uniting or dividing nature of

words, not the dimensionality.  The whole thing is done in dual.  A 6-edge under the

dual becomes a 6-margin.  

Whatever the virtues of the present notation is, it becomes a confusing and twisted maze

when one tries to extend it to higher dimensions.  For this reason, it was thought better

to  start  afresh  with  terminology  suited  for  a  much  higher  dimension,  and  descend

downwards.  This is the view from six dimensions.
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