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Abstract: Walls divide, bridges unite. This idea is applied to devising a vocabulary
suited for the study of higher dimensions. Points are connected, solids divided. In
higher dimensions, there are many more products and concepts visible. The four
polytope products (prism, tegum, pyramid and comb), lacing and semiate figures,
laminates are all discussed. Many of these become distinct in four to six dimensions.
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1. WALLS AND BRIDGES

Consider a knife. Its main action is to divide solids into pieces. This is done by a
sweeping action, although the presence of solid materials might make the sweep a little
less graceful. What might a knife look like in four dimensions. A knife would sweep a
three-dimensional space, and thus the blade is two-dimensional. The purpose of the
knife is to divide, and therefore its dimension is fixed by what it divides.

Walls divide, bridges unite. When things are thought about in the higher dimensions,
the dividing or uniting nature of it is more important than its innate dimensionality. A
six-dimensional blade has four dimensions, since its sweep must make five dimensions.
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There are many idioms that suggest the role of an edge or line is to divide. This most
often happens when the referent dimension is the two-dimensional ground, but the edge
of a knife makes for a three-dimensional referent. A line in the sand, a deadline, and to
the edge, all suggest boundaries of two-dimensional areas, where the line or edge
divides. We saw above, the sweep of an edge divides a solid.

In the proposed terminology, the margin takes on the role of a dividing edge. Face and
surface suggests a bounding nature, and so are taken to refer to containing a solid: a
four-dimensional face has three dimensions. A margin angle is the term that replaces
the dihedral angle. In four dimensions, dihedral angle is about as relevant as a corner
angle in three dimensions.

The decision to use the walls and bridges notion is more that certain words have
acquired powerful meanings that may lead to confusion in higher dimensions. It is
probably more important to keep the dividing nature than the two-dimensionality, of a
plane or a face. But I do consider later on the style of why a dimension-based
terminology is also important to keep.

The vertex-edge and face-margins are topological duals in every way. Where one can
do things in one, there is a corresponding dual for the other. Among the
mathematicians, the vertex-edge set makes for the simplest constructions: all vertices
are essentially alike, and edges have only length. For those who study crystallography,
the face-margin set appears to make the greater sense. Many of the crystals occur in the
shapes of Catalan figures.

Polytopes carry the names referring to their faces. Yet we deal with vertices and edges.
In any case, there is an asymmetry of names that needs to be corrected. My endeavours
into this field have been largely to address this asymmetry, largely by filling in the
holes.
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The starry polytopes are made by face-extension. However, the usual process of finding
them is by creating new faces in existing vertices of the dual. While the two are the
same process, the process is converted from a face-centric process to a vertex-centric
one. Faceting and stellation are dual processes. With faceting, we keep the same
vertices and span new edges, ..., faces. With stellation, we keep the face planes, and
find new margins ,..., vertices. The faceting or stellation is regarded as less extreme
when a greater number of elements are kept. For example, a first-margin faceting keeps
all the margins, and span new faces. A great dodecahedron is a first-margin faceting of
the icosahedron. The dual is that a stellated dodecahedron is a first-edge stellation of
the dodecahedron: a complete dual in every way.

The method used by Jonathan Bowers in his program to discover the uniform polychora
is to use first-edge facetings. In essence, an army consists of all the polytopes that have
the same vertices. This divides into regiments, which share the same vertices and
edges. This descends into companies, and so forth. The process corresponds to vertex-
facetings, first-edge facetings, and so forth. A corresponding dual would be to have
face stellations, first-margin stellations, and so forth, forming a navy of polytopes.
Stellations are more complex, because unlike vertices, faces do change.

We can talk of inner stellations, or outer facetings. An inner faceting has the same face-
planes as the figure, but lies inside it. The innermost stellation is the core. Likewise,
the outermost faceting is the hull. The core and hull are both convex.

The polytopes that form a first-edge faceting or regiment share a common set of vertices
and edges. One can talk of a first-edge subfaceting, where the vertices and edges form a
subset of the original set. A pentagonal antiprism is a first-edge sub-faceting of the
icosahedron. Just as with a set being contained in a superset, one can also talk of super-
facetings and super-stellations. An icosahedron is a superfaceting of the pentagonal
antiprism: it has all the vertices of the former, and two additional ones.

1.1 The Rhombus

A thread is a sequence of polytopes, one from each dimension, that share some common
property. The classic example is line, square, cube, tesseract, ... These form a
sequence of measure polytopes. But threads can cross and converge, especially in the
lower dimensions.
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The rhombus is a relatively useful polygon. It has four equal sides, and a pair of axies
bisecting at right angles. What ought be the polyhedron that should inherit the spirit of
the rhombus in three dimensions. I have three different words for the three different
qualities that the thombus gives, all based on the stem tegum.

A rhombohedron is a figure that continues the equal sides of the thombus. Where in
two dimensions, it is a square, stretched on its long diagonal, in three dimensions the
cube gets stretched in a like manner. While the rhombohedron tiles space, and is useful
in crystallography, the general class it belongs to I call antitegums. The rhombohedron
is a triangular antitegum. Antitegums are the dual of antiprisms.

A second element is the notion of crossing axies. In three dimensions, one can have
three crossing axies, giving rise to a kind of isoface octahedron. This is the dual of the
general rectangular prism. We might easily call it a rhombic octahedron, but the name
selected for this is fegum. The dual of any prism product is a tegum product of the
duals.

Kepler named a number of uniform figures and their duals with the name rhombo-, eg
rhombocuboctahedron. When we consider there is no rhombus in three dimensions, we
might ask which of the above two meanings is meant. The rhombic dodecahedron tells
us what is going on. The diagonals of its rhombic faces are the edges of the cube and
octahedron. In four dimensions, the edges of the figure cross the margins or polygons
of the dual. The resulting faces would be a tegum product of matching dual elements.
This gives a surtegum, or surface-tegum figure.

1.2 The view from six dimensions

The terminology I have selected for higher dimensions is tested in six dimensions.
Many of the different threads become quite distinct in six dimensions. Also, in six to
eight dimensions, there is a fascinating series of polytopes discovered by Th. Gosset. 1
could have set the thing up as the view from eight dimensions, but I can’t visualise that
many dimensions.

Many useful distinctions become more apparent in six dimensions. This is because
there are a larger number of intermediate dimensions. There are four different products,
one for each of the infinite regular polytopes. Of these four, two are distinct in four
dimensions, and the other two have to wait until five dimensions to become distinct. In
three dimensions, we can largely ignore these.
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At the moment, I am writing a polytope glossary, called the Polygloss. This sets down a
large vocabulary where the terms are largely defined to be consistent across the higher
dimensions. It only goes as far as eight dimensions, but the general pattern is there.

1.3 Around and Surround

In the higher dimensions, these terms are used to define quite distinct meanings.
Consider a three-dimensional subspace in six dimensions. A figure that is solid in the
subspace is both surrounded and arounded by different kinds of spaces.

Surrounding happens in the space that the thing is in. When one surrounds a fort, one
creates a barrier to ground transport to it.

Arounding happens in the space perpendicular the surface. When one dances around

the maypole, the dance is in a circle that encloses, but does not include, the maypole.
The maypole is a one-dimensional affair, but the dance happens in a two-dimensional
space that crosses it at one point: the ground.

The prefixes chosen to suggest surround and around are sur- and ortho-. So things that
have sur- in them happen in the space bounding a figure, and ortho- suggests a space
entirely perpendicular to it.
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In and out happen across a surface. Any shape that has a boundary potentially has an
inside and an outside. An enclosure made on the ground exists essentially in the plane
of the ground, and therefore has an inside and an outside. However, birds on the wing
would not observe this particular distinction. A shape drawn on a four-dimensional
plane of six dimensions has an interior and an exterior in very much the same way as
when it is solid in four dimensions.

1.3 Hyperspace, Slabland, and many products

Hyperspace means space over solid. It is useful to assume higher dimensions, some
mathematical theorems rely on this assumption. But to apply it to four dimensions or
any other particular dimension would lessen this utility. Calling a tesseract a hypercube
is like calling a square a hyperline.

Slabland is an approach to higher dimensions. One imagines that in a two-dimensional
world acquires thickness, like a pancake. The cartoon character Gumby, who resembles
a man cut out of a layer of green foam sheeting, would not look out of place here.
Slabland is a useful concept because we can make the transition from one dimension to
another by inventing thickness to interact. The more common form is Filmland, where
we are paper-thin film characters that blow around in a higher dimension.

The Slabland idea is also important because it can convert uniform polytopes into slab
prisms in the higher dimension: a hexagon becomes a hexagonal prism. One could then
have the same sequence number applied both to the polytope and its prism. In my
series, I give the number 7 to a dodecahedron, and 7 to its four-dimensional prism. The
first in the series is the ultimate slabland device: the square, cube, tesseract, &c.

Slabland gives way to the Cartesian product. The word prism means offcut, such as one
might cut off a length of wood. Imagine cutting a hexagonal pole into hexagonal
prisms. In terms of three dimensions, one can regard a hexagonal prism as being a
hexagonal offcut from a layer, or a short height off a long column, or the common
intersection. In terms of co-ordinates, a hexagonal prism projects onto a hexagon in two
dimensions, and its height into the third.
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In four dimensions, the prism product becomes distinct. What this means, is that there
are prisms that do not come from Slabland. One could place a hexagon in two
dimensions, and a pentagon in the other two, and consider their common intersection.

Another product that becomes distinct in four dimensions is the fegum product. This
makes the duals of prisms, but has its own identity. The original word proposed for it
was (tent), but somehow fabernacle is already used. Tegum means fo cover. The sense
is that the surface of a tegum covers its axies like a tent covers its pegs.

The land of tegums is Bouyland. The shapes of the previous dimensions are converted
into bipyramids that float around the surface like bouys at sea. A hexagon becomes a
hexagonal bipyramid or tegum. The first shape of bouyland is the square, octahedron,
16-choron, &c

To make a distinct tegum, we need to find something that distinct from Bouyland. This
is done by replacing squares or higher with some other figure from the same dimension.
Replacing a square in the octahedron by a pentagon makes the octahedron into a
pentagonal bipyramid or pentagonal tegum. A 16-choron, taken as the product of two
squares, can become a pentagon-hexagon tegum, with a pentagon in one pair of axial
dimensions, and a hexagon in the other two. The surface consists of thirty disphenoid
tetrahedra.

Tegums can be used as a measure unit also. The ratio of a tegum unit to the prism unit
is in the ratio of one to the factorial of the dimension. In five dimensions, the prism unit
is 120 times greater than the tegum unit. A tritegmal foot refers to the volume of an
octahedron, the diameter of which is a foot. The solid angle of a simplex, measured in
tegmal radians, gives a value between one and the square root of N/e.

Fireland makes a shape into pyramids. Our hexagon becomes a hexagonal pyramid.
The first member of these is a series point, line, triangle, tetrahedron, pentachoron, ...
The first distinct pyramids are found in five dimensions. This is where we can replace
pairs of triangles of the hexateron with other polygons. Unlike prisms and tegums, the
pyramid adds a dimension for every application: this becomes part of the height. So
where the tegum and prisms are the products of lines (diagonals or edges), the pyramids
are a product of points (apexes or vertices).
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In five dimensions, we have the hexateron being seen as a triangle triangle pyramid, and
we can replace the triangles by any other polygon. We could have, for example, a
pentagon hexagon pyramid. A slice through the altitude gives rise to a pentagon
hexagon prism. When the thing is projected onto four dimensions down the height, the
result is a pentagon hexagon tegum.

The last land is Layerland. This does not apply to polytopes but to Euclidean tilings,
and by extension, to horotopes. The way this land works, is that it replaces a hexagonal
tiling by a whole stack of layers of hexagonal prisms. The first member is a member of
tilings of measure polytopes: quartics, cubics, tesseractics. A tiling of squares is a
three-dimensional polytope, acting in the role of a two-dimensional honeycomb.

The comb product is the general product for layerland. The first comb-products that
don’t come from layer-land are five-dimensional polytopes, which appear as four-
dimensional tilings. In this, we treat the tesseractic as the comb product of two quartics
(square tilings), and replace each by other two-dimensional tilings. One could have a
tiling of triangle-hexagon prisms, or a trilat hexlat comb.

In hyperbolic space, the members of layerland do not appear as tilings but as polytopes
with a proper curvature, and a non-planar margin-angle. However, the comb product
still applies. In hyperbolic space, the trilat {3,6} is a three-dimensional polyhedron,
albeit with infinite radius. The comb-product {3,6}{6,3} gives rise to a five-
dimensional polytope: that is, it looses a dimension.

One can do comb-products over polygons as well. This gives rise to only the Cartesian
product of the surface. Where a pentagon-hexagon prism has eleven polyhedral faces,
the corresponding comb is just the mat of thirty squares that divide the pentagon prisms
from the hexagon prisms.

Circles and spheres can participate in all of the above products. For example, a cylinder
is a circular prism. One can talk of bi-circular prisms and tegums, or a glomohedral
prism (a 3d sphere x line prism).
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The four products described above give rise to a rather attractive over-all symmetry.
Adding a ‘1’ to various ends of the surtope equation of the four classes of regular
products converts these into power expressions. The same pattern makes for the
generalised product. For example, a tetrahedron has 4 faces, 6 edges, 4 vertices.
Adding 1 to each end makes 1,4,6,4,1 or 1,1 to the fourth power. We see that if we add
ones to both ends of any polytope before multiplying, we get the consist of the product.
For example, a square is 1,4,4,1 (4 edges, 4 vertices), and a point is 1,1. The product is
1,5,8,5,1. The square pyramid has 5 faces, 8 edges and 5 vertices.

The family of cubes or measure polytopes are powers of 1,2, the prism product adds a 1
only to the front of the sequence. A pentagon prism is 1,2 x 1,5,5 or 1,7,15,10. It has 7
faces, 15 edges and 10 vertices. Measure products preserve vertex-uniformity. That is,
if two figures are vertex-uniform, so is the product.

The cross polytopes are powers of 2,1. The tegum adds only to the end of the product.
A pentagon tegum is the product of 2,1 and 5,5,1. This gives 10,15,7,1. This has 10
faces, 15 edges and 7 vertices. The tegum product preserves the face-uniformity. That
is, the product of two iso-face polytopes, like the Catalans or the Platonics, give rise to
another isoface figure.

The family of quartics, cubics &c are powers of 1,1. Here the 1,1 represents an infinite
sided polygon, and adding 1 to either end is not going to make any change. The
numbers are proportional, in any case. None the same, the pentagon-hexagon comb is
the product of 5,5 and 6,6, giving 30,60,30. This comb product is a mat of squares in
four dimensions, with 30 faces, 60 edges and 30 vertices.

14 Polytopes and Mounting

A dodecahedron has twelve faces. There are many different kinds of dodecahedra, all
of which are bounded by twelve faces. The sense of -hedron is then a mounted polygon.
This particular notion has been preserved into the higher dimensions. The stem is
derived from a Greek word meaning seat: it occurs also in cathedral church, meaning
the church with the overseeing, or bishop’s, seat.
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The idea has been progressively extended into higher dimensions. A -choron is a
mounted polyhedron. The sequence continues to 3d choron, 4d teron, 5d peton, 6d
exon, 7d zetton, and 8d yottons. The names from four to eight dimensions are borrowed
from metric prefixes: these are meant to stand beside numbers without confusion.

A surtope is a surface polytope, or polytope mounted on the surface. Just as polytope

generalises the series point, line, polygon, polyhedron, ... the surtope generalises the
sequence vertex, edge, ..., margin, face, cell. A cell is a solid surtope, such as a tiling
might have.

When a polytope is mounted onto a second polytope, they share the interior of some
surtope. When this happens, the two must also share the surtopes of the shared interior.
That is, you can’t mount polyhedra by placing the square face of one onto the triangular
face of another. The join must match in shape and size.

The term polytope tends to get overused, more because there are not names for things
that are not polytopes. It is as important to consider these as well. The style selected
for the Polygloss is to use the concept of ‘polytopes mounted with some result’. These
are done by a series of Latin-and-Greek stems. We have already seen the stems
meaning the likes of “mounted 4d polytope”. We now look at the effects.

A polysurtope means many surtopes. It is a collection of mounted polytopes without
any sort of definite aim. These might be used in topological maps, for example. If every
surtope belongs to a polytope of the same dimension, one might call it a polysurhedron.
A polyface is a thing made out of bounding polytopes: for example, a net or partially
made model is a polyface. A polycell is several solid polytopes connected together.

An orthosurtope means the surtope that is orthogonal. The term is applied to the
surtope of the dual, drawn in the space around, or orthogonal to, the original surtope.
The dual of the orthosurtope is the surtope figure, a concept that generalises the vertex
figure.  This is topologically the same as the intersection of the surface with the
orthosphere.
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An edge-rectified polytope has its vertices in the centres of the edges of the polytope it
rectifies. A cuboctahedron is an edge-rectified octahedron. The dual of rectification is
surtegmation. An edge-surtegmated octahedron would create new faces, that are the
tegum-product of the edges of the octahedron, and the margins of the cube.

A polytope means many mounted polytopes. There is no consistent rule for it, but the
sense is some kind of closure, either a volume or margin completion. Different authors
have definitions for it. In any case, it is hoped a wealth of new words might provide
alternatives, and let polytope find a proper home.

An apeirotope means ‘mounted polytopes without end’. The sense taken here is that the
polytopes cover all of a space where they are solid. A tiling of hexagons, covering all
of two dimensions, would be an apeirohedron.

An apeirotope can be treated as the surface of a hyperspace polytope. The faces of this
hypertope become the cells of the apeirotope. Margins become walls. The
hypersurface becomes a surcell.

A planotope has plane-mounted polytopes. While this is essentially the same as an
apeirotope, it also has a volume. A tiling of hexagons and the half of all space it divides
makes a planohedron.

An anglutope is a ‘mounted polytope as a corner’. A single vertex of a dodecahedron
appears as three different corners, one for each pentagon. The idea of anglutopes
generalise this. It works in both directions: a pentagon has five corners, and a vertex
has three pentagon-corners. Anglutope conveys the sense of incidence, or surtopes
belonging to surtopes. A vertex may have incident faces, and such faces would be
described as the vertex’s anglufaces. One might call an incidence matrix an anglutope
matrix, with columns representing the surtopes, and the rows representing the incident
angulotopes.
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A horotope is polytopes mounted on a horosphere or sphere that has an infinite radius.
In Euclidean geometry, this is a flat surface. In hyperbolic geometry, this is a kind of
sub-space that has Euclidean geometry. A tiling of hexagons, three to a corner, would
form a horohedron. The term horotope is used to convey the sense of Euclidean surface
geometry in both Euclidean and Hyperbolic geometries. A horosurtope is a surtope that
is centred on a horopoint, or point on the horizon.

A bollotope is a polytope that follows a bollosphere, or hyperbolic radius sphere. A
bollosphere is also called a pseudosphere or equidistant curve. The stem bollo- is
derived from hyperbolic, in much the same way that bus comes from omnibus. Pseudo
means false. It already has active use in this meaning, and it does not well to overload it
with the sense of hyperbolic. An equidistant curve is just a curve equidistant from a
straight line. A line of latitude is also an equidistant curve: it is equidistant from a
straight equator.

A glomotope is a polytope mounted to make a globe. What this does is makes a single
face wrap around to form a sphere. A glomohedron is the shape we call in 3d a sphere.
In higher dimensions, there are 4-spheres or glomochora, 5-spheres or glomotera, and so
on. Sphere can then refer to a solid sphere. The glomotopes participate in all of the
polytope products. Even though some do not hold them to be polytopes, it is useful to
treat them as polytopes just the same. They even have their own Schlaffli symbol
allocated. A circle is {O}, a sphere is {O,0} and so on. A cylinder would be {} {O}, or
a circular prism. When a Wythoff style construction is applied, this translates to
shortening the axis. A prolate ellipsoid would become {;0,0;}, meaning the first two
axies are equal, and shorter than the third, while an oblate ellipsoid is {;0;0}, where the
first axis is shorter than the other equal pair.

1.5 Wythoff, Stott and Dynkin

Wythoff and Mrs Stott are both associated with discovering the great bulk of uniform
polytopes, more by fait of having the right notion, and filling in the holes. The magic
lies in the notions.

Wythoff relied on mirror-edge polytopes, and semiates to fill in the snubs. A mirror-
edge polytope is one where the ends of every edge are images of each other in a
bisecting mirror. The interesting thing is that edges do not have to be equal: every
rectangular prism is a mirror-edged figure.
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Given a mirror symmetry group, one can move the vertex around in the kaleidoscope,
and look at the resulting figure. In three dimensions, the kaleidoscope has three sides,
three corners and the interior. This gives up to seven mirror-edge figures for each
group. These seven are completely realised in the icosahedral and octahedral groups,
but the tetrahedral gives only two.

Mrs Stott’s construction consists of moving surtopes inwards and outwards. This has
the potential to create new faces. Imagine a cube covered by an elastic skin. If we grab
the faces, and pull them out (keeping the same size), the old edges and vertices will give
rise to new faces. We can do the same with any combination of vertex, edge and face,
to give rise to seven figures per core figure, as before.

Combining the two gives rise to a fascinating idea. Consider the mirror-group as some
kind of bounding plane, rather like an octant of the Cartesian system. This is in fact, the
case for the group {2,2}. When we move a point around, it moves around in all of the
other ‘octants’ as well, as if reflected in the walls. Mrs Stott’s construction corresponds
to moving the vertex parallel to an axis. The resulting axial system can be treated as a
coordinate system, and the vertex as the apex of a position-vector.

The coordinates are set, so that a unit along an axis corresponds to unit elevation off the
opposite face: this makes the points like (1,0,1) correspond to a mirror-edge polytope of
edge 2. The length of this vector corresponds to the circum-diameter of the unit-edged
figure.

In a sloping axis system, the way one finds the length is to use a matrix-dot. This is
done in the same way as a dot product, but one of the two vectors is pre-multiplied by a
matrix. The matrix used for this calculation is the Stott matrix, of which we shall
comment further. Stott matricies can be used for hyperbolic groups as well, this will
continue to give the edge of the resulting hyperbolic tiling. The value given is
2sinh(R/2L), where R is the radius of space, and L is the true length of the edge.

Dynkin’s contribution was to provide a multi-dimensional notation for Wythoff’s
mirror-edge construction. The much-used Wythoff symbol assumes that a mirror is
opposite an angle, a feature not replicated in higher dimensions.
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The Dynkin symbol is a graphical affair, not suited for use in running text. It is very
useful for the higher dimensions. One of the first things I did with it is to set it to
running text, and greatly extend the versatility of it.

We can construct the Dynkin symbol in terms of a matrix. The diagonal elements of the
matrix are set to 2, while the value for D(i,j) is -2cos(ij). The product of the Dynkin and
Stott matrix is 2 L.

The Dynkin symbol represents mirrors by points (nodes), and the angles between these
mirrors by edges (branches). Branches are only drawn if the angle between them is
something other than a right-angle. The most common drawn branch is a ‘3’ branch:
the convention is that drawn unmarked branches reflect at 60°.

For a regular figure, the Dynkin symbol is a chain. This is easy to represent in text,
because a chain can be made to lie down. For example, @--3--0--5--0 would represent
an icosahedron. But the dashes are entirely superfluous, and one could write @3050 or,
x3050. Since this also corresponds closely to the Schlafli symbol, one could write
53,5}

Not all of the groups derive from regular polytopes. The way around this is to make the
symbol represent a ‘trace’, or pseudo-regular figure. This is done by making some
branches connect to a node further back or further ahead. In oGoEo3x30A0BoCo, all of
the branches connect the outer o node to the x node. The B branch is a ‘third-subject
node’. A branch connects a subject to an object. The subject of the B branch is x, the
object is the o following the B. Since the x node is three back, it is a third-subject.
These branches suffice to discuss all the hyperbolic groups where the simplex has finite
content.

The special node z is used to indicate a return to the front of the chain. In the trace, it is
still counted separately for the counting to find the subjects and object nodes. A group
A5, represented by a pentagon of branches, might be written as 0303030303z. In the
Schlafli symbol, it appears as a colon, eg {3,3,3,3,3:}.



16 WENDY Y KRIEGER

In the interests of symmetry, a mirror-margin figure is one where every margin lies in a
mirror-plane. This is represented by the m node. Where an m node appears, the wall of
the kaleidoscope is part of some margin. The neat feature is that one can dualise by
swapping x and m. A cuboctahedron is 03x40, the dual is a rhombic dodecahedron
o3m4o.

Although figures can be both mirror-edged and mirror-margined, the correct style is to
show only one. A cube is both x4030 and 0403m, but not x403m. The reason for this is
that when applied across the direct product &, the x node implies a prism product, and
the m implies a tegum product. So x4030&x50 is a prism product of a cube and a
pentagon, while o403m&o5m is the same cube and pentagon in tegum product.

Circles and spheres can be treated in the same way as well. A circle is xOo, the higher
dimensions effected by adding further Oo segments. So an xOoOoOo looks like a
polychoron, and has O segments, so must be a glomochoron, or 4-dimensional sphere.
Something like xOo&x is a circular prism, or cylinder. In four dimensions, we can have

x0o0&x50, a circle-pentagon prism.

1.6 Laceland — Antiprisms and Antitegums

Kepler described among the uniform figures an infinite family of figures called
antiprisms. These are a kind of prism, where the edge of one base corresponds to the
vertex of the other. Triangles, not squares, form the sides. From higher dimensions,
two important threads pass through here. One of these makes the pentagonal antiprism
into a semiated decagonal prism: that is, what one gets by removing alternating vertices
of a decagonal prism. Semiation splits further into finer threads, so it is useful to deal
with semiates by new names.

An antiprism resembles some kind of drum, where the top and bottom are tied together
with lacing. In higher dimensions, the name of antiprism is allocated to a similar kind
of prism-like thing where the top and bottom bases are duals. The side faces are
pyramid products of surtopes and the corresponding orthosurtope.
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The idea of different-style top and bottom can be taken further. One can do this sort of
lacing to generate in three dimensions, prisms, antiprisms, pyramids, and cupolae. The
notion is that the surtopes of one face must systematically descend into surtopes of the
other.

One can use two Wythoff mirror-edge figures from the same symmetry as the bases.
When this is done, the side faces potentially appear at each of the nodes, being the lace-
prism formed by all of the remaining nodes. Lace-prisms are useful, since the vertex
figure of any Wythoff-mirror-edge figure is a lace prism with as many bases as the
figure has maked nodes.

The symbol for a Wythoff lacing-prism is to write the top and bottom in sequence, and
apply the &#x sequence at the end. So a dodecahedron truncated-dodecahedron lacing-
prism combines x5030 with x5x30, as xx5x0300&#x. An antiprism is simply the lace-
prism of a figure and its dual: for example, the cuboctahedral antiprism has as the top,
03x4o0 and as a base, 03m4o. The lace-prism is 003xm400&#xX.

For convex figures, we can describe a lace-prism as the convex hull, when the two bases
are placed in parallel planes, sharing a common centre-perpendicular.

The dual of a lace-prism is a lace-tegum. This figure has its own description outside of
saying ‘dual of’... One places the two bases, and constructs pyramids, so that the apex
of one base is in the centre of the other. The lace-tegum is the common intersection. If
the resulting pyramid is not solid, then it is made solid by extension in the
perpendicular. For example, if a pyramid is only in the x-y plane, it is extended
throughout the values for z by way of a Cartesian product.

The antitegum, the dual of the antiprism, has every surtope an antitegum. An example
of an antitegum is the measure-polytope, where every surtope is a simplex antitegum:
lines, squares, cubes, tesseracts. But this holds true for all antitegums. This is because
each face of an antitegum is formed by the antitegum on the face and the dual of the
face.
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An interesting figure one can create is an antitegmal cluster. Take any polytope, for
example a dodecahedron. Each of its faces forms a pyramid radiating from the centre of
the figure. We use each of these as one of the two lacing-pyramids. The second lacing
pyramid is formed over the surface of the figure. This replaces each face by its
antitegum. The inwards-pointing faces are not seen, and all that is seen is a apex of
antitegums forming the second lacing-pyramid. The axies of the exposed faces connect
the vertices of the dodecahedron with the vertices of the icosahedron. The antitegmal
cluster of a figure is the same as that of the dual, and the whole surface is bounded by
antitegums.

The most interesting of the antitegmal clusters is the one formed on the simplex.
Complete with the innards, it is what happens when a measure-polytope is squashed so
that the long axis is zero. The shape tiles space with relatively high efficiency, the dual
tiling being one of a 60-degree rhombic tiling with additional planes perpendicular to
the long axis.

An example of this is the digonal antitegum xo2o0x&#m. Suppose the axis runs in the z
direction. We construct a line pyramid (or triangle) in the x-z plane, and a second,
inverted line-pyramid in the y-z plane. Were these not completed, all we would see is
the common intersection in the z-axis. So the line-pyramid in the x-z plane exists for all
values of y, and the y-z plane exists for all values of x. The common intersection is the
space held between two vees of planes, which form pairs of faces of the tetrahedron.

The dual of a lace-prism is the lace-tegum, in terms of the symbols, a matter of
swapping x and m where they occur.

Lace-prisms and lace-tegums can have any number of bases. When one projects a lace
prism perpendicular to all of its bases, the bases appear as the vertices of a simplex.
The base and apex of a normal pyramid would project as the ends of the line
representing the altitude. Lacing-edges would project as edges of the altitude simplex,
one for each kind of lacing. An example of a three-based lace-prism is oxx&#x. This is
a square pyramid. The three bases are the apex and the north-south edges of the base.
The east-west edges, and the sloping edges are different sets of lacing.
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Laceland can be used with tilings as well. Although prism-products in general can not
be applied to bollotopes (hyperbolic type polytopes), we can still consider lacing layers,
either between the same, or different bollotope surfaces. For example, one can make a
layer of triangular prisms by xx300800&#x. One can fill laminatopes with laceland
style fillings. Laminatopes are discussed further on.

The vertex figure of any Wythoff mirror-edge figure is a lace-prism. It is quite possible
to discuss the vertex figure of x30403x in terms of a lace pyramid. It would become
xo4ox&#x. The unmarked nodes form the transverse or base symmetry. The marked
nodes correspond to the apices of the altitude. Each apex is connected separely to the
bases.

For example, the x3x30303x30 is a six-dimensional figure, and has a five-dimensional
vertex figure. The transverse symmetry is 030&o. The altitude has three vertices,
forming a triangle. Each vertex of the altitude connects to the nodes differently. The
first has no connection, ie 030&0. This makes a point. The second connects to form a
triangle, x303&o0. The third connects as 03x&x or triangle-prism. The resulting lace-
prism then is oxo3oox&oox&#x. We see that this figure has a three-dimensional
transverse, and a two-dimensional altitude, all together, five dimensions.

The dual of the vertex-figure is the face of the dual. We write straight away, the face of
m3m3o0303m3o0 as omo3oom&oom&#m. This three-based lace-tegum is constructed in
the same way as the two-based versions above, but is the intersection of three pyramids.

1.7 Semiates

The idea of semiates derives from removal of alternate vertices of a figure. A
tetrahedron is a half-cube, for example. Semiation can be applied to higher values than
two. For example, the semiated pentagon-pentagram prism is a regular figure called a
pentachoron. What happens is that one reduces the vertices of a pentagon-pentagram
prism so that only one-fifth of the vertices remain.

Semiation becomes more complex when there are more axies to pick from. This
happens for the first time in six dimensions, where we see the threads on step-prisms
and mod-prisms separate.
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The notion behind semiates is that one can number the vertices systematically. When
one takes a product of two or three such numbered polytopes, one forms an array (p,q)
or (p,q,r). The idea of semiation is that one removes all those p,q which do not agree to
some further restriction. For example, one might only want p and q equal, or the sum to
be a multiple of some value. If the vertices are kept, the result is a prism. If the face-
planes are kept, the result is a tegum.

In four dimensions, one finds the polygon-polygon prism. The vertices of a polygon
can be numbered from 1 to p. In a polygon-polygon prism, this gives a set of p? points,
running from 1,1 to p,p. What would happen, if we make these keep in step? The result
is a large polygon. Instead of keeping in step, we can rotate one twice or x times faster
than the other.

When p is a sum of two squares, such as 5 or 13, interesting things happen. The 1,2
bipentagon step prism is nothing more than the pentachoron. The 2,3 bi-{13} step
tegum becomes a rather interesting polychoron, bounded by 13 identical sides. The
matching step-prism has at least four vertices equidistant from the central one.

In six dimensions, the triple-product of polygons can be reduced in different ways. A
step polygon makes everything step together, giving a polypeton with p vertices. The 1-
2-4 tri-heptagon step-prism is the simplex in seven dimensions.

If one makes one dependent on the other two, for example x+y+z=0 mod p, then one
has a polypeton with p? vertices. For example, the 1-2-4 tri-heptagon mod-prism
contains the vertices of seven separate simplexes, for a total of 49 vertices.

Mod-prisms and mod-tegums get used in tilings as well. The body-centred-cubic can be
viewed as a step-prism over modulo 2. In higher dimensions, one can use 3 or 4 in this
place. The famous gosset-lattice in six dimensions can be constructed as step-prism
over modulo 3, of a tri-hexagonal lattice, where the three numbered points are the
vertices, the centres of the up-pointing triangles, and the centres of the down-pointing
triangles. The corresponding mod-prism would place additional vertices in the centres
of the cells of the {3,3,3,3,B,3}. This would make the vertices of 0303m3030Bo30, a
tiling of tri-triangular tegums, 720 to a vertex.
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1.7 Laminatopes

A laminatope is a polytope bounded by unbounded faces. An example of a laminatope
is a layer. The main use for laminatopes is to fill them with cells, and treated as a
module for finding tilings. In Euclidean space, the layers are usually lace-prisms of
tilings.

For example, xx3003003z&#x is a layer of triangular prisms. The x030x3003z&#x is
an oct-tet layer. The etchings on both sides of this are x30303z, a tiling of triangles.
One can then stack these in all sorts of systematic orders to produce several different
uniform tilings. For example, the oct-tet layers could advance, so that xo30x3003z&#x
is stacked on top of oo3x030x3z&#x. This advances the layer one step, producing a
repeat after three layers. Alternately, one could treat the top surface as a mirror, and
have layers of x030x3003z&#x and ox3x03003z&#x. This tiling gives the hexagonal
close pack.

The great search for uniform tilings centre on finding and sifting through the assorted
laminate tilings. Many of the non-Wythoffian hyperbolic tilings are laminate as well.

1.8 The known uniform hyperbolic tilings

There are an infinite number of uniform bollohedra. John Conway and Chiam
Goodman-Strauss have some generalised process for locating these. Without their
notation, the process is a relative nightmare, since any given polygon in a vertex-figure
can be replaced by a laminagon, and any two tilings can be merged.
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Of the bollochora and higher, the picture is relatively simpler, although by no means
complete. There are fourteen finite-extent groups in three and four dimensional tilings.
These and a few star-groups, give rise by Wythoff mirror-edge construction to many of
the known tilings.

There is an infinite family of borromeachora. For every polygon, except the square, one
can create the matching borromeachoron. The heptagonal version has a dozen
heptagonal prisms and eight cubes at each vertex. The vertex figure is an icosahedron,
where the six edges parallel to the axial systems represent a {p}, and the remaining 24
edges that form the eight triangles are squares. We see in the case of the square
borromeachoron, the result is the {4,3,5}.

There is also a scattered list of others.

One example is a partial truncation of the {3,5,3}. If selected vertices and attached
edges are removed, these vertices become dodecahedra, and the icosahedra become
pentagonal antiprisms.  The vertex figure becomes a tetrahedrally truncated
dodecahedron, with four dodecahedra and twelve pentagonal antiprisms at a vertex.

A second example is the laminatruncated {4,3,8}. The normal truncate produces an
x4x3080, which has cells x4x30 ‘truncated cube’, and x3080. The x3080 is not only
infinite, but in this case, a planohedron, when the edges are equal. The surface can then
be used as a mirror, to fill the whole of space with truncated cubes, 16 at a vertex. The
vertex figure is an octagonal tegum, formed by rotating an octahedron by 45° around an

axis.
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The other known example is a development on 0804xAx. In its primitive state, it has
three kinds of cell: a planotope 0804x, a curved 0803x, and a rthombocuboctahedron
x403x. The vertex figure is an octagonal rostrum, a prism with trapezoid sides. The
0803x is the right size and curvature to be part of an oo8o03xx&#x, an equilateral
prismatic layer. This replaces the smaller octagon of the vertex figure with a cap of
eight triangles. The base is completely flat, and can be used as a mirror. The resulting
tiling has 16 triangular prisms, and 16 rhombocuboctahedra at the vertex. The vertex
figure looks like a globe, with octagons forming the equator, the lines of longitude at
45° steps, and a smaller octagon representing 45°N and 45°S. Without the two poles,
the thing can be made by rotating a cuboctahedron through 45° around the axis through
the square-centres. One finds {4,8} formed by the squares passing through the great
circles, and {8,6} formed by the octagons that can be drawn inside the
rhombocuboctahedron, on the girthing hexagons of the two inscribed cuboctahedra.

Of four-dimensional tilings, two are known, these are duals of each other.

The first consists of a tiling of bi-truncated 24-chora 03x4x30, 64 to a vertex. The thing
derives from 03x4x3080, where there are two infinite cells x4x3080, and eight 03x4x30
at a vertex. The meeting-angle is smooth, and can be used to reflect the 45° angle
occupied by the 03x4x30 around. This fills all-space. The resulting vertex figure is an
octagon-octagon tegum, where 16 different x4x3080 can be formed by one octagon, and
an edge of the other. The cell walls are truncated cubes x4x30, which form a
laminatruncated {4,3,8}. The octagons form an {8,4}, and the triangles a {3,8}.

The dual is a tiling of bi-octagonal prisms, 08x2x80, with 288 to a vertex. The vertex
figure is 03m4m3o0, formed by placing equal-sized dual 24-chora together, and covering
the lot with the convex hull: 288 disphenoid tetrahedra. The squares form a tiling of
{4,8}, and the octagons form an {8,6}, but there is no through-passing of three-
dimensional cells.

2. THE POLYGLOSS

The Polygloss is a dictionary designed to encompass all of these concepts and more.
Versions of it are placed on the web from time to time. One of the problems for it is
that I have more words to describe than I have names for. There are many unnamed
concepts that scream out for one.
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Many have interim names. What I describe here as lace-prisms is in the Polygloss as
exotic prisms. Exotic is used elsewhere. An exotic polygon has coincident vertices.
The more useful concepts get interim names until they get their final name. Many of
the others go by the hand-waving names, like ‘thingie’.

For many years, the tegum product was called the octahedral product. The name does
not fit well, but it was important even for hand-waving, that the thing had its own name.
With tegum fully placed as the dual of prism, it provides a much richer and distinct
name for many other figures.

2.1 The present terminology

The present terminology reflects the origins of geometry in the real world. It also
carries useful concepts for which I am presently attempting to replicate in the Polygloss
style. But it is in the main, a lost cause, I should imagine.

The same terminology in two dimensions carries across without modification to three.
This seems to be the basis of some of the alternate vocabularies. A face, for example is
a two-dimensional element in this style. Other things, like cells bound polychora.

While this provides a seamless conversion between dimensions, what gets lost is the
auxiliary meanings. Apart from being a two-dimensional thing, planes divide. The
present terminology is skewed in favour of the uniting forms.

Worse still, is the same stem gets divided into diverse meanings. A face and a facet in
three dimensions, has the same meaning. In four, a facet might have several faces. In
the Polygloss, a surface-mounted polygon is a surhedron, always. It can act as a face or
a margin, but it always is a surhedron. Face and facet are then counted amongst the
division-terms: a division between inside and outside.
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The primary distinction in the Polygloss is to preserve the uniting or dividing nature of
words, not the dimensionality. The whole thing is done in dual. A 6-edge under the
dual becomes a 6-margin.

Whatever the virtues of the present notation is, it becomes a confusing and twisted maze
when one tries to extend it to higher dimensions. For this reason, it was thought better
to start afresh with terminology suited for a much higher dimension, and descend
downwards. This is the view from six dimensions.
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