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Abstract

A derivation of polytope theory beginning with number theory and bases. With the derivation
comes the logic behind the

1 Introduction

The study of polytopes begins with base arithmetic. There are a number of rather unexpected connections
between bases and polytopes, principally arising from the cyclotomic numbers. The notation advances
with some rather interesting views.

The mathematics is not itself complex, but rather it is the unstated assumptions that sets this from
conventional. Somewhere, religious beliefs creep into the process.

Mathematicians design their art as to provide a quick path to the matter in question, using ordinary
words for this. The question is not so much to create a unified naming, but more to lay duck-boards to
the matter in hand. Often the beauty of the situation is lost.

1.1 Angles

Angles are measured as a fraction of space, and not the subtended area of the sphere. The angle from
a solid section (such as at right-angles to an edge), are the same as the solid angle of the full space. So
the hedric angle of an octagon is 3/8, is the same as the hedric section of a vertical edge of an octagonal
prism.

1.2 Naming Conventions

I find that the names used in this subject lead to confusion and a good deal of wasted time. If as much
care had been taken to giving names as to the mathematics, this problem might not arise. So in the style
of Oliver Heaviside, I shall use a rational system of names, and set the text accordingly.

Names given in honour of people, serve to confuse and mislead later researchers. The so-called
“Wythoff Notation” is an example, which might lead people to seek out Wythoff’s papers, or suggest that
it’s “Wythoft’s Notation”. Both of these things I have done in front of one of the authors of that notation.

Another source of confusion, is the use of different people’s names to designate part of the same
process. Stott’s vectors are by common names, to be normalised using Gramm matrices, and Dynkin’s
symbols rendered into Schléafli Matrices, even though some of these people have more important roles
here.

Schlafli is the first of many to describe regular polytopes by their sillage, that is, a series of num-
bers representing how many around an N-2 element. There are useful processes that come from these,
discussed later, but none involve the so-called Schléafli matrix. That is actually a representation of the
unmarked Coxeter-Dynkin symbol in matrix-form.

In the rational notation, we shall extend a single name across an entire process, so one is aware that
this goes with that.

When the dimensionality of something is increased, one must consider if the new element is a ‘+’ or
an ‘=’ role. Where a name is taken to preserve a constant number of ‘=’ elements, it means the term is



held relative to solid. For example, surface is taken to represent a single x = 1 style operator. This is a
partition of space, and corresponds to a dimensionality of N-1.

Common usage is to preserve the number of ‘=’ signs in changes of name, while the mathematicians
preserve the number of ‘+’ signs. A face in three dimensions is ‘+-+=’, that is two dimensions dividing
space, but in four dimensions, it is used to represent ‘++==", two dimensions, while a new term facet is
used to describe ‘=, eg ‘+++=", being three dimensions dividing space. In four dimensions, ‘a tesseract
has eight facets, each of which has six faces’, is by no means absurd, when facet simply means a small
face. The rational way is to say ‘A tesseract has eight faces, each having six margins’.

It may not be such a problem, until you recall that other words have to be re-purposed or invented to
fill the gap. Norman Johnson was using ‘cell’ in the sense of a 3d surtope, (choron). When I suggested
what would he do with the word in ‘cellular’, he suggested ‘cellule’. Such was the effects at play that
this is now the ‘standard term’ for what people call ‘cell’.

Equally offensive is ‘weight’ to designate the force of weight, when it correctly designates what is
called ‘mass’ (measure). The acts specify that weighing shall take place on a balance, so the ruling
equation is that of a torque balance, viz, mgl = MGL. The weighing is correct when both pans swing,
or weigh. Given the size of the balance is such that the error in ¢ — G is significantly less than other
errors, we can suppose this. The act specifies L = [ in the primary instance, so the weights are identical,
be it in London or Darwin, or even the moon. The balance does not work in free space, which is why one
is weightless. Spring scales, which correctly measure the force of weight, have to be adjusted to indicate
the true weight.

Yet this does not stop large numbers of vandalisations of the correct usage on places like the Wikipedia,
where students have been told by their professors that weight is a force, and so forth. A new word is
needed, and heft is the rational choice.

2 Bases

By the enthusiast, a base represents a replacement for the current decimal system. The current state of
this art is the modern decimal implementation: one has a digit for each column, and the arithmetic is
implemented by tables. It is this second element which limits the choice of base. In essence, one might
have to learn the arithmetic tables for b? separate elements.

Bases lead to measurement systems, the general rule is to clone the decimal metric system, fixing
up perceived errors. Attaching a measurement system brings into play much larger numbers. While
the ordinary count might bring 100 or so to mind, measurements of length range from millimetres to
kilometres, often something like nine places of decimal.

For the count, a number is grouped into a number of batches of size b, and a remainder. This
continues until all one is left with is remainders. Each count of remainder has its own symbol: a digit.
Older number systems might have symbols to represent the order of count, repeated for as many times
as the remainder. Thus 12 might become XII, meaning a batch of 10, and two remaining.

The method of converting between bases, is to replicate this casting of groups, the division is a
repetition of the base, the outcome appears in the remainders. Thus, to convert 1000 to dozenal, one
notes it is 83 dozen, and 4 remainder. The count of dozens is a number, and groups to 6 dozens
remainder 11. Then 6 groups to nothing and a remainder of 6. The number is then 6.11.4. A symbol for
the additional digits V for decimal 10, and E for 11, allows us to write this as a fairly ordinary number
6E4.

There is little mathematics in this activity. It is more a linguistic enterprise, the issue of the day is
to name the extra digits, and what names the columns ought have. The example of 6E4 might be ‘six
hundred and elfty-four’, or ‘six gross, eleven dozen and four’ or any of a range of issues. Part of the
question is is the new base to be by itself, or is it going to live beside decimal.

Bases are taught in middle-grades, such as to children at the age of ten or eleven. It is a short session.
In Pendlebury’s Shilling Arithmetic, it occupies a half of a page. On the other hand, the decimal fractions
occupy ten or twelve pages of text.

Decimal fractions are derived by successive multiplication of the fraction, the integer being the re-
mainder, and the new fraction ensures. Unlike the count, this process usually has no end, instead, one
stops when sufficient digits are found. Thus an english foot, rendered into metres goes 10 feet make 3



metres and a bit. 10 bits makes no metres and a bit. 10 bits make 4 metres and another bit. 10 bits
make eight metres.

In the work of Stevin’s ‘La Disma’. this fraction would be 3 primes, 4 thirds and 8 fourths. The
decimal or unit point would take another forty years after this work. Converting the fraction is to simply
replicate this sequence of remainders, but with 12 as the multiplier.

2.1 Periods

One of the common activities that base enthusiasts like to do is to prepare a table of reciprocals of
small numbers in several different bases, as if such might attract new users. Certain numbers have a
terminating reciprocal, that is, they divide some power of the base. The great majority have a continuing
fraction. For example, in decimal, 1/8 = 0.125 while 1/9 = 0.1111111.... Some reciprocals enter a period

after a leader, so 1/6 = 0.1666666, the ‘1’ bit is a leader, and the ‘6’ bit is the same as in two-thirds,
1_2_ 1

’ ance erom the right of any point in the period, the digits represent some numerator on the same
denominator (for example, in 1/7 = 0.142857..., the digits beginning at the ‘5’ represents 4/5), the
pattern recurs at some number less than the denominator.

Given that ax =b (mod b)) and that the periods of every numerator is the same length for primes,
the period must divide p—1. This is Fermat’s little theorem. Gauss extended this by a test as to whether

there are an even or odd number of loops. This is quadratic reciprocality.

2.2 Algebraic Roots

The algebraic roots are the real factors of ™ — 1. These exist for each divisor of n. One can find these
from the decimal values, using a BIGNUM routine, the following works for roots as many as 163 digits.

The odd numbers have fewer divisors, so we follow the Cunningham Project order, of placing the odd
numbers one step before the corresponding double.

o e decimal +5’s equation
1 9 564 z—1
2 11 566 z+1
4 101 5656 2241
3 111 5666 > +x+1
6 91 5646 22—z +1
8 10001 565556 1
5 11111 566666 st a1
10 0091 564646 -3+ - +1

12 9901 565450
7 1111111 56666666 | 26 +2° + 2t + 23 + 22 + 2 +1
14 009091 5646464 | 26 — 2% 42t — 23 422 —2 +1
16 | 100000001 | 5655555556 ¥+ 1
9 1001001 56556556 20+ 23 +1
18 099001 56554556 20— 23 +1
20 | 99009901 | 5654565456 28— b 4t — 22+ 1
24 | 99990001 | 5655545556 a® —at 41
15 00090991 | 5645646546 | 28 — 27 + 25 — 2t + 23 —x 4+ 1
30 | 109889011 | 5665444566 | 2® + 27 — 2% —zt — 23+ +1

Table 1: Small Algebraic Roots

Adding a string of 5’s turns the decimal number into a form with negative digits in the base. The
polynomial is then derived by replacing the digit in 10* by d — 5. At 163 digits, there are a few that
require £2 as a polynomial coefficient, this process correctly handles this.

Primes that have a period of n will divide the entry corresponding to n in this table. This entry is
denoted as bAn. The list of primes that divide bAn forms the ‘Yates’ tabld’] The balance of numbers

* After the corresponding table in Yates’ book Repunits.



not dividing these are the repeaters and sevenites. Where p divides some bAj, then it also divides some
bApj. For example, 3 divides 10A1, and so it divides 10A3 and 10Ag.

A much rarer occurrence is where p? divides some bAn. These are the sevenites, which for any given
base is extremely rare. The name refers to the smallest compound sevenite, where 7% | 1843. Decimal
has three known sevenites, being 3, 48756598313 run as far as 120%. It is extremely rare to find a large
compound sevenite (ie p?|bAj, p > b), only one is known under b < 2,000,000 (b=68, p=113).

n

2.3 The base as 0" —a

2.4 Alternating Bases

It would be remiss not to discuss the historical number systems. These are not cosy numbers near ten,
but rather large numbers, multiples and fractions of twenty are the order of the day, but other systems
appear sparingly. Many of these systems do not use a single value per column, but alternate. The same
logic applies as before, except now one must care which number produces the remainder.

Bases 18 and 20 are large enough to use a two-row abacus, and one alternates between numbers that
make these. A score is made of tallies, each of units. A tally of scores might make a block. We should
show the count of 118 in decimal, in both of these systems.

In base 18, a tally is 6, and a score is 18. The 118 coins make 19 tallies of 6, and four left. 19 is then
bundled into 6 scores and 3. A group of 6 scores make a block. We might write this as ’ ’4, meaning a
tally of scores, a tally and four.

In base 20, a tally is 5, and a score is 20. The 118 coins make 22 tallies and three, the 22 tallies give
5 scores and 2, and the 5 makes a tally of scores. We get ’ "3.

Conversion can be done directly, since each uses a series of columns. ’ "3 divides by six to give "4
remainder 4. Dividing this lot gives ’1 remainder ’, and ’1 gives a block of 6: ’ remainder 0. So ’ "3
(b2o) is * ’4 (b18).

The alternating systems derive in part from having two rows on the count-table, with different widths,
A count in the lower row overflows to the upper row, and the upper row overflows to the next column.

2.5 The Base as Integer System

The set Bn describes numbers that can be written exactly in base n. While most of the primes still
remain primes, the erstwhile primes that divide n become units of the system. For example, in the set
B10, the numbers 2 and 5 have terminating reciprocals, and thus % and % can be written exactly in this
system.

Base enthusiasts make a good deal of the versatility of these numbers.

If one supposes that the fractional part of a number is in base %, then there is a direct correspondence
of the numbers between o and 10, and the integers, by the simple ruse of reversing the index. 12345,
for example, corresponds to 5.4321. This closely represents the correct way to calculate the size of the
fractional part, since it often meets the line of all a/N is represented for a = 1 to N, at powers of any
size.

This means that while any binary number can be exactly represented in decimal, this does not directly
confer to rulers. The decimal 1/1000 contains all of the eighths, but the binary ruler of this order would
go to 1/1024. The order of intersection is thus calculated as a cascade. Decimal numbers contain binary
numbers, at the same rate that they contain numbers made of binary digits (o, 1), but allow for ten
digits. So it corresponds to In2/In10 = 0.30103. A ruler divided into 1000 parts, contains 1000%-30103
parts, or 8 in total.

Where the bases contains several primes, the proper cascade is found by adding the least portions for
each. For example, with 120 and 10, the primes are 2, 3, 5, in 120 we find that there is actually 8 for 2,
so we get

Ing& ln2)+ ,(1113 ln1)+ . (ln5 Inb
0120’ 10’ 120 w10’ T MM 1207 In 10

)

J = min(

= min(0.43438, 0.30103) + min(0.229475,0) + min(0.3361756, 69897) = 0.63720555



This produces an intersection of 81.583 for 1000 in decimal, or 21.1278 for 120, which is different to the
cumulation of 2-5 numbers. This is because the decimal digits is smaller than the twelfty, and more
digits are needed to show the same large N.

3 Chord or Iso-Arithmetic

The element in chordal arithmetic, is to take a step, and veer 2a to the right, and then take another step
of the same size. The bisector to the right is at angles b to the first step, and this in general produces
a series of isosceles triangles of angles 2a, bb. The ray connecting the beginning of the first step to the
end of the second makes an angle to each step equal to a.

The points reached by this method form a circle. Such is evident that the radius of said circle are
formed by the equal edges of the isosceles triangle. The product of any two chords gives a number which
can be expressed as a sum of chords. The set over ’any sum of’ is the span of that set, and it suffices to
show closure of multiplication to make the set one of an algebraic integers.

A given chord is made from steps at bearings starting at (n — 1)a, and proceeding in steps reducing
the angle by —2a, until a.(1 — n) is reached. Thus a chord of three steps is made at angles 2a, 0, and
—2a. The product of two chords comes from replacing each step of one chord, with a series of steps
representing the other chord. The product of such chords produces a rectangular table, with the rows
running from (n—1 +m—1)a across to (n—1 + 1—m)a, and the last row running from (1—-n + m—1)a
to(l—n + 1—m)a.

The run of chords to make the sum, is for the longest chord to take the first row, and down the last
column, and by successive reductions of 2, each new chord is the next row, down the next column, until
the last chord taken is part of the last row. So the product of two chords, of m and n, is a sum of chords
running from m +n —1 to m —n + 1, where m > n. This is the sum of n chords centred on chord of m
steps.

The full set of chords can be derived from C2, which is a, —a. Multiplying Cn by C2 produces the
sum of two chords C(n+ 1) +C(n— 1

Since all chords for a given polygon can be derived from C2 alone, we shall refer to C2 as the short-
chord. In convex polygons, it is the shortest chord not actually an edge. It is denoted by a lower-case
letter, usually a, but where several polygons are in hand, P has shortchord p, and so forth.

The chordal triangle runs as powers of a, but is given in tabular form, rather than as algebraic
expressions. It runs thus. The expressions that polygons like that of 7 or 11 sides, can be solved by the
process of equating two consecutive chords that add to these numbers.

The table is by additions, the number in cell (i,j) is given by (i-1,j-1) - (i-2,j). For example, the four
in the C7 row comes from the last ’1” in the C6 row, less the -3 in the Cg row.

The second table shows the powers of a in terms of the chords.

0 CO vertex g f e d ¢ b a 1 (o

1 C1 edge 1 0 (1)

1 o a C2shortchord 1 0o 1 (2

1 o -1 bC3 1 0 2 o (3

1 0o -2 o0 cC4 1 0 3 o 2 (4

1 0o -3 o 1 dcs 1 0 4 o 5 o (5

1 0 -4 O 3 o0 eCé6 1 0 § 0 9 o 5 (6)

1 0 -5 o 6 o -1 fcC7 1 0 6 o 14 o 14 o (7)

The equations that odd polygons must satisfy can be found by equating consecutive chords of the
table.

zp{5} set C2 = C4d gives 22 —z —1=0

zp{7} set C3 = C4 gives 2® —2? —2x+1=0

zp{11} set C5 = C6 gives 25 — 2t — 423 + 322 +2-1=0

zp{13} set C7 = C6 gives 26 — 25 — 5zt + 423 + 422 —2 - 1=0
The snub polyhedra can be catered for by imagining they be 3, S;. In this case, the rake of triangles form
a series of chords. The shortchord of 8, comes by supposing the third or fourth chord is the non-triangular



figure. In the antiprisms, this leads to a quadratic, but for the snub dodecahedron and snub cube, a
cubic ensures.

Antiprisms: C3 = a(p) 2—1-a=0

Snub figures: C4 = a(p) 2> —2x—a=0

3.1 Sample Numeric Series

The progression of chords resembles a number of famous numerical series. Before we look at isoseries in
general, we shall look at some famous series.

3.1.1 J3 - Fibonacci-like Series

The fibonacci series runs o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Each number is the sum of the
two to the left, so 5 = 2 4+ 3. One can construct fibonacci series from any pair of starting numbers, the
iteration is t,,41 = tn + tn — 1. It will be noted that the power series is 22 = x + 1 is the convergence of
terms, this is ¢ = % + %\/5
That the series above starts with Fy = 0, F} = 1, can be found from that every F,,, is a multiple
of F,,, only when these settings are held. Because of this, it resembles a series of rep-units, such as
1, 11, 111, ---. This is less remarkable, when one supposes its resemblance to the chords of polygons,
the multiples feature due to inscribed polygons.
The series representing the shortchords of inscribed polygons, is the Lucas series. It runs as 2, 1, 3,
4, 7, 11, 18, 29, 47, ... Each of these numbers has a square that differs exactly four from a fifth-square,
for example 112 = 5 x 52 — 4, 182 = 5 x 82 + 4. In practice, L — 5 x F2? = +4.
The alternating members of this series more closely resembles a polygon of shortchord of three.
2 3 7 18 47 123 322 843 | y? =52 —4
1 4 11 29 76 199 521 1364 | y> =5z>+4

The top row are numbers whose squares are 4 greater than a fifth square, the lower represents numbers
whose square is four less than a fifth square. In both cases, we see that ¢,_1 + t,41 = 3t,, which is
consistent with a polygon of short-chord 3. Steps of two on either row show that there is an inscribed
polygon obeying t,,_o + t,, 12 = Tt,, and so forth.

3.1.2 J4 - The Heron series and the Mersenne primes

The Heron formula for the area of a triangle, given its three sides, is A = \/s(s — a)(s — b)(s — c), where
2s = a + b+ c. The Heron series relates to a series of triangles, with three consecutive numbers for
edges, which give an integer area. This is A = \/3n.(n + 1).n.(n — 1 or ny/3(n2 — 1), where the edges
are 2n — 1, 2n, 2n + 1. Thus we seek instances where n? — 4 = 3a2.
The series runs 2, 4, 14, 52, 194, 724, 2702, ... The values are twice the middle row here. The iteration

for this series is as follows:

1 0o 1 4 15 56 209 780 2911

V3 1 2 7 26 97 362 1351 1364

1+V3 |1 3 11 41 155 /71 2131 7953

This series is also used to find large primes, reckoned as the Mersenne test. Suppose that 4n 4+ 1 is a
number, which divides the heron-number at position n. If the power-of-two divisor of 4n is larger than
the non-power of 2, that is 4n = k.2%, k < 2%, then the number 4n — 1 is a prime. The further proviso
is that 4n — 1 =7 (mod 21). It is most famously implemented when k& = 1 in the above example, but
this is an extreme requirement.

The primes that work run as 7, 31, 79, 103, 127, 151, 223, 271, ... The algorithm used to determine
the members of the heron-series, is typically finds members for 2" only.

The algorithm works because primes p = 7 (mod 14) are ‘upper long’ in J4, and the algorithm
creates the quarter-period, which is for all isoseries, zero. So if the period is zero at m, it means that
the number is a product of numbers of the form 24a + 7 or 48a + 1, but the power of two prevents any
factorisation. Hence the number is prime.

Let’s look at the proof that 103 is prime. First we have 103 =7 (mod 24), which means that it’s an
‘upper long’. This means its period divides p+ 1 (ie upper), an odd number of times (ie long). Because



we are playing with the equivalents of 2 cos 6, the period of 103 divides 104 an odd number of times, and
so at 26 and 76, (the right-angle points), the cosine is o, and so it should divide this.

If we calculate the series to 26 terms, we get heron(26)= 742 397 047 217 294. This is a multiple of
heron(2), representing quarter-points of 13 cycles of 8, but it is also a multiple of 103.

Now, in order to have a period that is 8 times an odd number, we find by gaussian quadratic rule,
that p =1, 7 (mod 48). So 7, 97, 103 are the first three primes, and we know 7 does not go into 103,
and anything past this is more than the square root, then 103 is prime.

In fact, 742 397 047 217 294 is 2¥7%103%103%4998431569. The last of these is a lower-short prime, its
period (104) divides p-1 (lower) some 48061842 times (which is even).

The presence of 103 twice in the product is rare. No other prime under 120 has this property. It is
similar to Shank’s prime (487) in decimal, which divides its own period.

3.1.3 J5 - Notes on the rational use of 2

3.2 Isoseries

Isoseries can begin at any value, since the algorithm is ¢t(n+ 1) = a X t(n) + t(n — 1). This is symmetric,
so if S(n) is a series, then so is the reverse S(—n). The series can be shifted any number of places, so
if S(n 4+ m) is also a series. It admits scalar multiplication and addition, so given two series starting at
(0,1) and (1,0) it then the series (a,b) = b(0,1) + a(1,0) at every place.

Less obvious is that steps of m in the series, forms an isoseries in a new constant, and one particular
series represents the isopowers, that is, p(n) is the constant at n steps. It is also represented as p™n.

tth+m—1) =alm—1)tn) —tlh—m+1) a"m-—1
t(n+m) = a(m)t(n) —t(n —m) a”m

ttn+m+1) =alm+1tn) —tn—m-—1) a"m+1

Since columns ¢ and i represent isoseries in a, so must column 44, which is the sum. Dividing through
by t(n), the constant at each step is an isoseries of a. It requires little further to puzzle out that a(0) = 2
and a(1) = a. The result behaves like a power-series.

3.3 Isoseries in 10.1

It is instructive to construct isoseries in this number, because it shows quite clearly what can be had
from this operation.

P/o 2.0 co 0.0
P/1 10.1 c1 1.0
P/2 100.01 c2 10.1
P/3 1000.001 c3 101.01
P/4 10000.0001 c4 1010.101
P/5 | 100000.00001 c5 | 10101.0101
P/6 | 1000000.000001 || c6 | 101010.10101

Table 2: Isopowers and Isochords base 10.1

When the base 10 is set to a value where 27 = —1, the number 10 then represents cis(1/2p) in rational
units, or cis(7/p) in natural units. Powers of 10™ then are steps of cis(n/2p). The deflection of a step of
1 from the direction of 100, is an angle of 1/2p, which is the margin-angle of a polygon {p}.

The Isopower series gives rise to the shortchord? for successive inscribed stellations of the polygon,
some of which may be inscribed polygons. For this reason, we can represent the power as {P/n},
representing that it is an inscribed polygon of {P}.

The isochord gives the succession of n steps, rotating by 1/2p at each step. Such describes the chords
of a polygon, in the given form, all such chords would fall on the real axis. The thing to note here is
that these values look like repunits of a base, or number constructed entirely of 1’s. They are indeed

2The shortchord is the base of a triangle, formed by two edges of a polygon.



repunits of base 100, expressed in base 10. It will be noted that steps of n in the chord table, will give
an inscribed polygon {P/n} of edge c¢(n).

Another series to be considered is the pseudo-isoseries, which takes the form of t(n + 1) = k(n) +
t(n —1). The fibonacci and lucas are examples, with k£ = 1. Various forms with k = 2 give rise to the
silver ratio (v/2 + 1). These can be constructed as a pair of interlaced isoseries.

P/o 2 2 Co ) 0
P/1 10 10 || C1 1 1
P/2 102 102 C2 10 10
P/3 1030 1030 || C3 101 101
P/4 10402 102%102-2 Cyq 1020 102*10 - 0
P/5 | 105050 102*1030-10 || C5 | 10301 102*101-1
P/6 | 1060902 | 102*¥10402-102 C6 | 104030 | 102*1020-10

Table 3: Pseudo Isopowers and Isochords base 10

3.4 The Isoladder

The isoladder is an algorithm which allows one to find arbitrarily large members of an isoseries, in
logrithmic time. It runs at % of the speed that is used to find ordinary large powers.

In the following example, it is desired to find the 37th member of a series beginning with terms to,
t1 using a shortchord si.

io i1 | s2 |to t1 t2 t3

37 1 1| 0 2 3
18 o 2| 1 3 5 -
9 1] 41 5 9 13
4 ol 8| 5 13 21 -
2 o|16| 5 12 37 -
11 132] 5 37

Table 4: Calculating s2°%1 from a series beginning tg, 1

The values i1 and i2 are integers, the registers needed for these need not be large. The variables s2, to -
t3, are done in a bignum process. This could mean doing a modulus step at each calculation.

The algorithm runs along these lines. This is REXXP] code that runs this. For odd io, to and t1 end
up with t1 and t3. For even io, to and t1 become to and t2. The % is integer division, the // is integer
modulus.

The procedure works with exact integers, rather than approximation, and thus a version of the
algorithm can be made to use modular arithmetic. The additional argument b1l is the modulus of the
calculations. So while Isoquad can work with real numbers, isomod is designed for BIGNUM type
calculations.

ADDQUAD is for series of the form ¢,,11 = kt,,+t,—1. Given tg, t; and n, the input is t (n)=ADDQUAD(k, n, t(o),t(1)
For generalised fibonacci numbers, k=1.

ISOQUAD is the series t,,41 = kt, — t,—1. Alternating members of an addquad series make an
isoquad series, which is the reason for the return isoquad() call at the end.

addquad: procedure; parse arg go, io, to, ti
if io < 1 then do; io = 1-io; t2 = t1; t1 = to; to = t2; go = -go ; end
i1 = trunc(io/2); iz=io-ii1-i1
if i2=o then t2=t1 ;
else do; t2 = mmv(go,t1,-to); to = t1 ; end
t1 = mmv(go,t2,-to); go = mmv(go,go,-2); io=i1
return isoquad(go, io, to, ti1)

3ReginaREXX is available for most platforms. The code is SAA REXX



isoquad: procedure ; parse arg go, io, to, ti1
if io < 1 then do; io = 1-io; t2 = t1; t1 = to; to = t2; end
do forever ; if io=1 then leave
i1 = trunc(io/2); i2=io-i1-i1
if i2=o then t2=t1 ;
else do; t2 = mmv(go,t1,to); to = t1 ; end
t1 = mmv(go,t2,to0); go = mmv(go,go,2); io=i1
end /*x forever */
return ti1

mmv: procedure; parse arg xXo, Xi, X2 ; return Xo*Xx1-X2

When the modulo relative to some number P (which can be as large as P x P < NumericDigits)
is needed, simply copy these routines, then rename the above two functions addquad and isoquad to
something different, and call mmp() for mmv/()

mmp: procedure expose p; parse arg X0, Xi, X2;
r1 = X0 * x1-x2; r2 = trunc(ri/p)

r2 =r1 - r2 *x p; if r2 < o then r2 = r2+p
return r2

Here are some sample routines that access isoquad or addquad.

fibon: procedure; parse arg to; return addquad(i,to,o0,1)
lucas: procedure; parse arg to; return addquad(i,to,2,1)
qdiag: procedure; parse arg to; return addquad(2,to,1,1)
qdiag: procedure; parse arg to; return addquad(2,to,1,1)
heron: procedure; parse arg to; return isoquad(4,to,2,4)
ipow: procedure; parse arg to, ti; return isoquad(to, ti, 2, to)
icho: procedure; parse arg to, ti; return isoquad(to, ti, o, 1)

fibon(n) returns the nth fibonacci number, starting 0,1,1,2,3,5,8...
lucas(n) returns the nth lucas number, starting 2,1,3,4,7,11,29
gside(n) returns the approximate square side 0,1,2,5,12,29,70,169
qdiag(n) returns the corresponding diagonal 1,1,3,7,17,99,239

Note that each of these four convert from a pseudosequence to alternating isoseries at the initial call.
heron(n) returns the middle edge of a triangle x-1, x, x+1, of integer area. It runs 2,4,14,52,194.
ipower(b,n) and ichord(b,n) return the nth term of the isopower and isochord series for any base.
imod(b,n,m) returns isopower for ipowb,n modulo m. The Messerine prime test can be demonstrated
with this command, as

mesprime:; procedure; parse arg p;
if imod(4,2%*(p-2),2%*p-1)=0 then say p ’is prime’; return

3.5 Isobases

The isobases are derived from isoseries in integers, essentially add to the variety of base available. Since
we have already shown that these produce rep-unit numbers, and additional outside powers, we simply
construct the root from a? 4 b? = k, and ab = f. Instead of requiring a and b to be integers, we suppose
that k£ and f are integers, and describe the base as k/f.

One of the advantages of this approach is there is no loss in generality in writing ordinary base 10 as
101/10, or 3/2 as 13/6. The same program can be used for both regular bases and isobases.

We can then modify the algebraic roots to work from an isobase of 10.1.

The Algebraic root for 30 is 5665444566, in symmetric form. This is 55555555555 + 109889011.
Because we are working from both ends, it is possible to remove leading fives (which count as zero), and
fold the number in two.



halfstr: procedure; parse arg str ;

stri = trim(str,’5’) /* stri = "665444566" */
strx = length(str) %4 2 + 1 /* strx = 5 */
parse var stri 1 strf (strx) . /* strf = "66g544" x/
parse var stri . (strx-i) strb . /* strb = "44566" x/

if strf = reverse(strb) then return strf; else return Error

The equality of the two halves is demonstration that the digits have not strayed too far from +0. If
there had been a carry, it would have affected to the left on one side, and to the right in the reverse.

Having found that 44566 is the required string, the second part is to evaluate the number. The
columns that go through to row 6 are isopowers. These are added to the running total at the rate of
d — 5, where d is the extracted value. The first two give d —5 = —1, account for the negative sign. The
third is 5, leaving the number unchanged, the last two are 6, giving 6 — 5 = 1, adds the digit in.

0 1.0 4 -1.0 1 -1
1 10.1 4 -11.1 10 -11
2 100.01 5 -11.1 98 -11
3 1000.001 6 988.901 970 959
4 10000.0001 6 | 10988.9011 9602 | 10561
5 | 100000.00001 . 95050

6 | 1000000.000001 . 940898

Table 5: Isoroot and Algebraic root for 30

If we don’t want decimals here (and simply use BIGNUM integers), then we should use isopowers
of 101, and multiply the cumulative sum by 10 before adding the next digit (including o). The actual
values for 101 and 10 are k and f in the base itself.

Having pulled a number at the end of this process, it remains to set a command to invoke factorisation.
This can be handled by >factor’ x, or where factor=c:\bin\factorx.exe, simply factor x. REXX
is pretty good at formating the output and program inputs.

3.6 Factorisation Notes

Having written such a program, it is a simple matter to create a list of these root strings and the matching
root, eg 30: 44566, and simply let the program have its head. Prowling through the output, it is easy
to make certain observations.

e The factors of the numbers are usually primes for which r divides p + 1 (upper) or p — 1 (lower).
Small primes divide this root if p | (r) means p | (pr) and vice versa. This can be seen in decimal,
where 3|111 although the period if 3 is one digit, not three digits.

e The division of the period into the maximum, is governed also by a gaussian rule. That is, for
fibonacci numbers, 17|17 + 1 an even number of times, as 17 divides F;, when 9 divides n.

e Isobases are much more accessable, because the roots are smaller.

The gaussian rule is a form of quadratic reciprocal, g(p,n) is even when p | 22 — n for some z and
odd if it doesn’t. It makes no sense to evaluate (p,p) When even and odd are represented by £1 the
numbers are weakly multiplive, that is g(pg,n) = g(p,n)g(q,n). It is only necessary to find the values
for the co-squares, since g(p,n) = g(p, nz?).

The primes are positive or negative as they are 1 or 3, modulo 4. The cases for 1 and 2 are given in
both forms (1 is square). The co-square factor must agree in sign, so for 120, the co-square is 30, and
the product is -2*-3*+5, one uses those rows.

The cycles for -5 and -6 are against modulo 20 and 24, demonstrate the property that if the number is
relatively prime to 10 and 12, and the tens-digit is odd, then it has an odd number of odd-tens numbers,
and an even tens-digit gives rise to an even number of tens-divisors.

For bases. a g(b,p) = 1 means that p has a short period, ie divides (p-1) an even number of times.
Where g(b,p) = —1, the period length divides p-1 an odd number of times.
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p g(p,n) =1 g(p,n) = —1

-1 1, 5 (mod 8) (1 mod 4) 3, 7 (mod 8) 3(mod 8)
+2 1, 7 (mod 8) 3, 5 (mod 8)

-2 1, 3 (mod 8) 5, 7 (mod 8)

-3 1 2

+5 1,4 2,3

-7 1,2, 4 3: 5, 0

-11 1,3, 4,5 9 2, 6,7, 8,10

+13 | 1,3, 4,9, 10, 12 2,5, 6,7, 8 11

+17 | 1,2, 4, 8,9, 13, 15, 16 3, 5, 6, 7, 10, 11, 12, 14
-19 1, 4,5, 6,7, 9,11, 16, 17 | 2, 3, 8, 10, 12, 13, 14, 15, 18

Table 6: Gaussian function g(p,n) for all x mod p

For isobases, when g(b% —4,p) = 1, the prime is lower, ie its period divides p —1. When g(b? —4,p) =
—1, the prime is upper, meaning its period divides p+1. When g(b + 2,p) = 1, the dividend is even,
when g(b+ 2,p) = —1, the dividend is odd.

Negative numbers, in both cases are taken to account.

The fibonacci numbers form the rep-units of an isobase -3. We then have upper/lower according to
-1*-5 = +5, and long/short according to -3+2=-1. This means that in every odd position, the fibonacci
number is a product of (2) and numbers of the form 4z + 1. Numbers ending in decimal 1, g still divide
p — 1, while those ending 3,7 are long. So 13, 17 are lower-long, so their periods divide 7 and g. We find
the seventh fibonacci number is 13, and the nineth is 34 = 2*17. For 11 and 19, these are lower long,
so their periods divide 10, 18 an odd number of times. fibon(10) = 55, and fibon(18) is 2584, which is a
multiple of fibon(g) = 34, by Lucas(g) = 76.

The messerine primes rely on that 2P — 1 is an upper long prime in isobase 4. short/long is decided
by -3 * -1, and upper / lower by -3 * -2. The relevant primes have a modulus of 7, mod 24, and so it is
upper (-1*-1) against 3 and long against 6.

3.7 Isoroots

These are the isoroots, the list produced by a feed into a symbolic calculator (Derive for DOS). The
shortchords for the polygons solve the equation for 2p being set to 0.

6: X - 1

4: X

3: X + 1

10: X2 - X - 1

12: X2 - 3

8: X72 - 2

5: X2 + X - 1

14: X°3 - X72 - 2*%X + 1

18: X°3 - 3*X - 1

9: X°3 - 3¥X + 1

7: X733 + X72 - 2*xX - 1

15: X4 - X73 - 4¥X"2 + g4*X + 1

20: X74 - 5¥X"2 + §

24: X74 - 4¥X"2 + 1

16: X74 - 4¥X"2 + 2

30: X74 + X73 - 4*%X72 - g4*¥X + 1

22: X5 - X74 - 4*¥X73 + 3¥X72 + 33X - 1
11: X5 + X74 - 4¥X73 - 3*X"2 + 3%X + 1
21: X76 - X°p - 6*%X74 + 6%X73 + 8%X"2 - 8xX + 1
26: X6 - X°5 - p¥X74 + 4*%X°3 + 6%X72 - 3*X - 1
28: X76 - 7*¥X74 + 14¥X"2 - 7

36: X76 - 6%X74 + g*X"2 - 3
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42: X6 + X°p - 6%X74 - 6%X°3 + 8*%X"2 + 8xX + 1
13: X76 + X°5 - 5*¥X74 - 4*X"3 + 6%X72 + 3*X - 1

3.8 The Pell equation X% = kY? +4

The Pell equation in the form X2 = kY2 + 4 gives rise to an isoseries, which at most is an inscribed
series to the minimal solution. The matter is to find the minimal X for a given k. In turn, this involves
finding a continued fraction for vk, which can be done without any knowledge of it.

Let base = 21; and k = sqrt(21) = 4.58257569496

4.58257569496 = 4 + 1/1.71651513898 = 4 + ( -4 + k) 2

1.71651513898 = 1 + 1/1.39564392376 = 1 + ( -1 + k) / 5 2

1.39564302376 = 1 + 1/2.52752523152 = 1 + ( -3 + k) / 4 4 =1% 2+ 2
2.52752523152 = 2 + 1/1.89564392421 = 2 + ( -3 +k) /3 10 =2 % 4+ 2
1.89564302421 = 1 + 1/1.11651513840 = 1 + ( -1 + k) / 4 14 =1 * 10 + 4
1.11651513840 = 1 + 1/8.58257573850 = 1 + ( -4 + k) /5 24 =1 % 14 + 10
8.58257573850 = 4 + x =8+ (-4 + k) 110 = 4 * 24 + 14

Where 110 = the cube of g5, also, 110 * 110 - 24 * 24 * 21

Il
N

On paper, the calculation runs as follows. bb is the supplied constant, and gx is the truncate of the
square. The sought value is returned in b3.

gx = trunc(sqrt(bb))

a b c e f g bo = 2; b1 = 0; c1 =o0; f1 =1
o 2 do forever
1 o o 1 a2 = (gx + c1) % f1
2 4 2 4 5 5 b2 = a2 * b1 + bo
3 1 2 1 20 4 c2 = a2 *x f1 - c1
4 1 4 3 12 3 e2 = bb - c2 * c2
5 2 10 3 12 4 f2 = e2 ¥ f1
6 1 14 1 20 5 if f2 = 1 then leave
7 1 24 4 5 1 * bo = b1; b1 = ba2;
8 4 110 c1 = c2; f1 = f2; end

b3 = b2 * c2 + b1

This algorithm needs further checking. The first is that b3 x b3 > b2 * b2 % bb, something that can
occur if the number is comprised of primes of the form 4n + 1. In this case, we would we would put
b3 = b3 * b3 + 2.

The second fix requires that the algorithm works for even b3, and we need to check that this is
actually something of the form b3 = b43 — 3 x b4. This is an isocube. In effect, we take the cube root of
b3, truncate it, add one, and test for the value above.

Printing values out at the end of these two tests gives

bb a b c

5 4 18 3 a value produced per algorithm
7 16 16 16 b after first test (b3 * b3 > b2 * b2 * bb)
17 8 66 66 c after second test (b3 = bg ** 3 - 3 ** byg)

21 110 110 §

The interesting observation here is that ¢ never exceeds the square root of bb. This places a limit on
how many iterations the loop can pass through (ie twice the square root).

A test was put in to see if there is no remainder on dividing e2%f1. No error has arisen in the many
thousands of values enumerated in this algorithm.
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4 Spans of sets and equations

A span of a set S is defined as any member Y z;s;, where z; is an integer and s; is a member of the
set S, If every s;s; is in the span of S, then the span constitutes an integer system. The proof lies in
the existence of a trimex S; ; ., whose columns S; ; = s;5;. The determinate of the matrix S; ; rv; is an
integer, the factors of which, represents the divisor to the 1/r power, where r is the free rank.

It follows that the intersection of a finite-span closed to multiplication, and the rationals, is the
integers.

The set defined for a span of an equation, is a (real) root, and its powers. Where the set is governed
by x3 = 2, the span is of 1, z, z2. The transition from one root to another is an internal isomorphism,
when 2’ € span S and external if it isn’t.

The span of the shortchord of a polygon p is such, that which solves the isoroot for 2p. The various
stellations provide the alternate roots, and so every polygon forms an integer system that is isomorphic
within itself.

It will be noted that the final digit is one, unless the polygon is 2p”, for which it is p. From this one
finds that it is never possible to reach the centre of a polygon p”, by taking unit steps of any combination
of rational angle.

The product of chords of a circle gives H?il cho(a/n) = n. Since every chord comes from an integer
system as described above, the integer-factor of the chord is 1 for composite numbers, and 1/(p*~!(p—1))
for a power of a prime. Any other integer-factor implies the angle is irrational.

4.1  The Pentagon

The pentagon answers to the equation 22 — x — 1 = 0, which we can implement as a stone-table, where

coins in two adjacent columns, become one in the column to the left, viz 11 = 100 (in the same base).

4.2 The Hypercomplex plane

This is graphic representation of a system where j2 = 1, in much the same style as the complex plane.
The various class-2 systems, like the pentagonal, octagonal and dodecagonal systems fall on it.

It acquires the hyper- prefix, by virtue that trig functions on the ordinary complex plane become
hyperbolic trig functions here. All of the functions are replicated, except now things like cos i sin
become cosh +j sinh, and circles of given radii become replaced with hyperbola of given differences.

There are unit hyperbola, and a corresponding -1 hyperbola. The units of any system lie on these
hyperbolae. A rotation in the plane becomes a hyper-rotation, that is an area-preserving skewing of the
shape along the hyperbola.

Also present are the zero and alt-zero axies, which represent the parts of the o-hyperbola. The
perpendicular distance from these two axies, represent the real and alt-real size of things. An octagon
in the real space becomes by inversion, an alt-octagon.

Numbers then have two signs, one real, and one alt-real. The distances observed in finite polytopes
have squares whose sign and alt-sign are both positive. The ones with +- signs have an piecewise finitef]
and a sparsdf] Further, because there is an isomorph, by replacing j with —j, the points are restricted to
a finite area where both the real and alt-real squares fall in a definite ranges.

4.3 The Heptagon
5 The Radiant Solid

A solid is taken to be a region of space, occupied by the substance of the figure, for which there is a
definite boundary, which within it, it is present, and without it, it is absent. One can consider obvious
non-solid distributions, such as the Gaussian dot, answering to d = exp(—rss(z,y, 2))

4Piecewise-finite means that it is possible to construct the incident surtopes on any given surtope. An example is {3,4}.
5Sparse here means that every point of space is no more than some finite  from a vertex, and no two vertices are closer
than y from each other.
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The prototype solid is taken to be a double-unit sphereﬁ which answers to the equation r? = 22 +
y? + 2%, or r = 1ss(x,y, 2). Here rss stands for root-sum-square. Such a figure has a clear surface at 1,
values less than this are interior, those greater are exterior.

The solid is taken as a function of surface. Specifically, where a ray crosses the surface a number of
times, each instance is found separately. So, the sphere is not taken as a position of angle fn(r, 8) but of
surface, that is, fn(r, S). The integrals are over surface, not over angle.

The surface is taken as n = Vd, that is, the gradient of the density vector. Because the solid has no
motion, §dS.

The enclosed volume is the moment of surface, that is v = f Vz - dS. Because the volume is
independent of where the moment is measured from, it follows that §n-dS =0

If the surface were to be broken into two parts, the ringl] separating the two parts span a definite
vector area, and that is independent of the closing surface. The sum of the two halves must always be 0.

The radiant function, then for each value of z, defines a copy of the solid at the scale x, where 1 is
full-sized. When = is set to %, then the result is a half-sized figure.

5.1 The radiant space

For radiant space is one where the point (x, y, z), represents a copy of the cartesian product of the solids
in these spaces, at the radiant function. the solids we draw in this space is formed by the integration of
points. Each of these axies can represent separate solids of any dimension.

The generic prism product is represented by the cube with the diagonal (0,0,0) to (1,1,1). The radiant
function is max(x,y, z), where the maximum is over the absolute value. This corresponds to cutting out
of the X, Y and Z spaces, the shape so represented. The word prisma is as off-cut.

A cylinder can be represented as a stack of coins, each coin is replicating the bottom base at that
height. It can also be represented as a faggot of matches, where each match represents the full height
and a point on the base.

The radiant function sum(z, y, z) represents a different product. The product applied over unit
edges gives the orthotope, with the canonical vertices (£1,0,0). This product covers the surfaces of the
various base figures, in much the same way that a tent covers its pegs. Originally, the word for tent was
put forward, but tabernacle is already taken. Instead, a word for cover was chosen, this being assimilated
to tegum.

Unlike the prism product, the tegum is a drawn product, or one of draught. The allusion here is to
as gum might draw into strands as the two parts are separated. The interior does not take part.

The pyramid product was found from the surface of the tegum. It corresponds to the plane X+Y +7 =
1, which draws the surtopes at the corners into a progression of prisms, the size of the prisms being unity.

5.2 Coherent Products

In a measurement system, the coherent units of space are the prism product of the length measure.
Where different products used, different coherent units may arise.

For the space described above, one can start with a prism or tegum, and replace any axis with
a different shape of the same dimension. Since this will cause each layer of the product to increase
proportionally to the old volume to the new volume, the volume of the product is the product of the
volume. To this end, the sphere, cube and octahedron has been so tested, and lead to separate coherent
volumes. Note that the volumes are not equal, the octahedral line is only 1/6 of the cubic line.
It is then possible to write a new physics, using these measures, especially the tegmic units, as base
units. The measurement of volume from area becomes V' = [r-dS, and one might need to reevaluate
the relation of inverse-square laws. For example, the rational form of the coulomb equation becomes

F= gfg, the extra factor of 2 comes from the surface of a sphere is now S = 87r2.

61n real life, the circles and spheres are measured by their diameter. Radius is only used for small arcs of a circle, such
as deviations and range.
7A ring is a closed boundary on the surface.
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Pn Cn/Pn Cn Cn/Tn  Tn Cn/Tn
1 linear 1 diametric 1 diagonal 1
2 square 4/7 circular 2 rhombic 2/m
3 cubic 6/m spheric 6 octahedral 1/m
4 biquadric | 32/7%  glomic 24 tetrtegmic 3/4n?
n  Prismic | n™/?/n!!  Crind n! Tegmic 2/ (n — 1)

Table 7: The Coherent Products

5.3 Altitude

Altitude refers to those axies over which draught and copy happen, like that of the antiprism or pyramids.
An antiprism is the drawing of a figure onto a parallel copy of its dual.

If one supposes a three-dimensional altitude, with antiprisms forming the axies, then one will note
that the cover is a tegum product. None the same, any face of the octahedron-in-altitude is dual to its
opposite face. and thus the tegum-product of antiprisms is itself an antiprism.

Likewise, the dual case, of the prism-product of antitegums (dual of antiprisms, but has its own
construction), is itself an antitegum. The construction of an antitegum is to project cones over parallel
dual figures, and take the intersection. But in the prism, the opposite corners of the cube-in-altitude
represent the pyramid product of the figures, the opposite is the pyramid product of the dual, and hence
the intersection is an antitegum (for each great diagonal of the cube).

Using large dimensions as the altitude lead to very large dimensions. A lacing of lines in this manner
can lead to a five-dimensional solid quite easily. The table below shows a triplet of rectangles, parallel in
one axis and orthogonal in the other, set at the corners of a triangle ABC. The result is five-dimensional,
with just 12 vertices.

A x x o square

B x o x square

C o x x square
The pyramid product might be understood in this light, but where the bases appear only once along the
main diagonal.

5.4 Surface, Periform, Hull

The boundaries of a solid vary when the surface is let cross itself. The example here refers to the small
stellated dodecahedron {2,5}.

The hull is the least convex shape that contains the points in question. The vertices of the stellated
dodecahedron is an icosahedron.

The periform is the shape equal to the referenced points of a solid, excluding all exterior points. It
is the shape that you would make in modeling a polytope. The periform is an apiculated dodecahedron,
with pyramids raised on each face.

The surface is the gradient of density, and its vector-moment is the volume of the polytope. There
can be parts of the surface that are interior to the periform, such as the pentagons in the pentagrams,
which are a d2 (density-2) wall separating endocells of d1 and d3.

5.5 Endocells

A surface that crosses itself, will divide the interior into a number of different cells, each cell has its own
density.

6 The Schlafli Series

If a is the short-chord of the polygon, the diameter D of the same polygon can be found from the relation
D? = 4_4a2. The maths is simplified by working with the squares, rather than the actual lengths. This

happens if you have no way of finding the square rootﬁ

8In some parts of the world, calculators in the 1970s were still expensive things.
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In this calculation, if P is a polygon, then p is its shortchord-square. Learning the values of P and p
was a way of getting around not having the necessary trig and log tables.

Where {P,Q} is a polyhedron, then its vertex-figure is p{@}. It follows from this that the diameter
can be found by using the same formula as above. The iteration in this table is by eg {P,Q, R} =

2{Q, R} = p{R}

2 2
S o 4: 4—s
RS 44—7‘3 4i;is 8 —2r —2s
4—s 4(4—r—s
QRS Z(_T_i 16—4(5—4r—4)s+qs 16 —4q —4r —4s +gs
PQRS 32 —8p —8q — 84 — 8s+ 2pr + 2ps + 2gs

This function is symmetric, in that f(p,q,r) = f(r,q,p). From this function alone, one can calculate the
radius of the polytope as f(verf)/f(figure). It turns out that the function of a product is the product
of the function, so f(a)f(b) = f(a x b). The final column of the table gives the Schléfli function for
3,3,..P. The value A is for k; ;, while B equates to ko;.

When this index first comes to zero, from positive values, the result is a euclidean tiling. We might
note that in 3D, the condition for 16 — 4¢ — 4r — 4s 4+ ¢s = 0 can be rewritten as 4r = (4 — ¢)(4 — s),
it is the factor 4 on the right-hand side that severely limits the values that lead to a polyhedron with

rational angles. We should bring to bear some powerful theory to finish that proof.

Polygon | P | a a’ Sch {3,..,P}

2 R|o 0 2n
5/2 V | 0.61803398875 | 0.38196601125

3 S |1 1 n+1

4 Q | 1.41421356238 | 2 2
ki A 2 4
ko 1 B | 1.5 2.25 9—n

5 F | 1.61803398875 | 2.61803398875 | 2— (n—1)/¢

6 H | 1.73205080757 | 3 3—n

7 1.801937736 3.2469796037

8 3.41421356237

10 1.90211303259 | 3.61803398875

12 1.93185165259 | 3.73205080757

U |2 4

Table 8: Commonly used shortchords of polygons

The values for 3..3,5 and 3..3,6 can be written as ¢ —n/¢ and 3 —n, where [®R)e initial value represents

the square of the shortchord.

6.1 Antiprisms

Antiprisms answer to the third chord being the base, that is, 2> — 1 —p = 0.

a 4a? Remark

Cz2 1 1 Tetrahedron
2.5 1.61803398875

C3  1.41421356268 2 Octahedron
Cq 2.41421356238

Cs 1.61803398875 2.61803398875 Icosahedron
C6 2.73205080757

U 1.73205080757  3.00000000000 Triangle stripe

Table g: The indicated shortchords for antiprisms as {3,P}
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It is interesting to note here that the shortchord-squares include values that have a complex conjugate,
that is, the usual rules of isomorphism do not apply here.

6.2 Snub polyhedra

The snub cube and snub dodecahedron can be realised as polyhedra of the type {3,sC} and {3,sD}.
Using the circumaadius of the figures, and the formula a? = 3 —1/(—1+72), where r is the circumradius,
we get these indicated shortchords.

p circumradius a a®
3,2 0.707106781186 1.41421356238 2.00000000000
sT  0.951056516295 1.61803398875 2.61803398875

sC  1.343713373744601 1.685018324889720 2.839286755,214160
sD - 2.15583737511564  1.715561499697367  2.943151259,243881
3,6 very large 1.73205080757 3.000000000

Table 10: The indicated shortchords for snubs as {3,P}

6.3 The cube

The Schlifli equation for the polychora {p,q,r} is given by pr — 4p — 4q — 4r 4+ rs. Setting this to 0,
for Euclidean lattices, gives 4¢ = (4 — p)(4 — r). Since all of these represent polygons, the product on
the right must be a multiple of 4. But we can demonstrate that the only solutions that work is when
p=r=2,viz {4,3,4}, or when pr =0, ie {2,q,r}.

The next highest power of 2 in polygon shortchords is 8, where the effective power of 2 in the
shortchord is v/2.

6.4 The system B2Z4

This family is suggested by the octagons and octagrams of the uniform octahedral group. In essence,
one extends these figures by supposing that only some faces are accessible, and that, for example, the
octagons of the truncated cube belong also to some of the faces of a regular solid with octagon faces.

Likewise, the squares of the rhombocuboctahedron might be replaced by octagons, that a polyhedron
with a girth of eight octagons arise.

6.5 The Schlafli Function

Schlafli put forward a request or hope, that one day, the order of a group might be derived from the
symbol. Sixty years later, Coxetei] reported no further enlightenment. It still has not been attended
to. Instead, the group order is found by way of the Euler characteristic for polytopes of that group, or
where the polytope occurs as a face or cell of a tiling.

Note that if the polytope is treated as a surface, varying between elliptic and spheric, for example,
such a function is less likely to be found as a matter of course.

It is known from spherical excesses and defects, the form of such equation, but experience shows that
it is irrational in the odd dimensions of surface.

7 Eutactic Lattices

Coxeter defines a eutactic star as the normals to the mirrors, in either direction, of the mirrors of a
group. Groups with only odd mirror-angles or right angles, have only one star. Each separate set of
nodes that removal of even branches leaves, is a separate star.

My scheme lists the kaleidoscope, rather than the group it follows. A symmetry identified by several
letters means that there are several distinct mirrors, each subset of these also constitute a group.

9Regular Polytopes, 1947
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Name Cox. Curr. Kri.  Order Lattice Cox. Cur. Kri.
Rectangular r 2" prismatic T
Simplex A A s (n+1)! P A t
Halfcube B D h 2n~lpl gtr.cubic Q D q
Cubic C B=C hr 2™n! semi.cubic S C qr

cubic R B qrr

Polygonal D I p# 2p horogon W I T
Hexagon G SS 12 hexagonal A% G tt
Gosset E E g gos(n) gosset T E y

F F hh 1152 3,4,3,3 U F qq
Pentagonal G H f pen(n) v

gos(n) is the product of the first n of 1,2,6,10,16,27,56,240.
pen(n) is the product of the first n of 2,5,12,120

Table 11: Reflection-groups in all dimensions

A group like 4qq contains 24 mirrors, twelve of each ‘colour’. A single mirror of the second q reflected
through the first q will only be imaged to four copies. This would produce qr. The mirrors of q are made
from three copies of r, one needs mirrors from at least two sets of these. The group {3,4,3} is by itself,
made from two mirrors from each q, these being the first two nodes, and then the third and fourth node.

7.1 Eutactic Stars

The eutactic lattice is thence the span of the eutactic star. The interest here is that every Wythoffian
mirror-edge polytope is contained in its relative lattice. These lattices have as sections, eutactic lattices of
lesser dimension, and for as far as nine dimensions, may be constructed as layers of balls. This represents
the twin problem of efficient sphere-packing and the kissing number, or equal spheres touching a common
sphere.

From these structures come lace towers of different polytopes, and also the form of efficient non-lattice
packings.

The stations of the lattices are where all of the mirrors cross. This happens at more points than the
lattice may occupy, and as such represent ‘fractional coordinates’.

The lattice occupies one of these positions, but in a stack of layers, the lattice can be placed at
different standing points [} From such layers, we can find all sorts of exciting things.

The number of standing points or stations, is equal to the number of separate nodes that have the
maximum symmetry. For t, the group is represented by a polygon or loop of branches, with n + 1 nodes.
For q, the group is represented by a chain of branches, with two sub-chains, of unit length, branching of
the second and second last nodes, or 4 in total. For y, the groups are 259, 331, and 521, these have 3, 2
and 1 maximal node, or 9 — n nodes.

We shall find that if s represents the number of stations, the packing of spheres of diameter v/2 is
1/4/s for these lattices.

7.2 The t lattice

This is formed by a lattice over the edges of a simplex. It’s essentially an oblique cubic: if one vertex is
taken as the origin, and the rest as units in each dimension, the full set of points is the integer coordinates.

The volume of a simplex, in tegum units, can be found from a cube corner. This simplex, bounded
by the origin and the units of axis, (ie 1,0,...0 etc), forms a volume of one unit tegum measure. This is
the same as the base by height, if the simplex is taken as the base, and the height is the perpendicular

to the origin. The distance is given by the ray to the coordinate (£ 1---) or ﬁ A simplex of edge v/2

has a volume of y/n.
The volume of a simplex in n dimensions is thus 1/4/1 + n, since the above calculation if for a
simplex-face of an orthoplex or tegum-power.

1%hence ‘station’
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We now suppose there are rays from the origin to the mid-points of the surtope of the opposite face.
The product of these rays, one of each kind, give the volume of the simplex in tegum units. The unit of
the lattice, is however, the rhombus formed by these rays. These are extended to the points (1,1,1,..,0,0),
where the number of 1’s represent the number of vertices of the simplex surtope. These range from 1 to
n, giving a product of rays of nlv/n + 1 in tegum-units, or v/n + 1 for prism-units.

The walls between the cells in this rhombotope, is given by planes that sum to integers (> x; = m+1,
and correspond to m-rectate of the simplex. The simplex is itself taken to be the O-rectate.

The stations of this lattice fall at the centres of the cells. This divides the long ray of the rhombotope
into n sections, and hence n + 1 stations, counting the ends.

7.3 The Laminate Tilings of types LB2, LPA2 and LPB2

In two dimensions, the lattice is that of triangles. The three stations fall at the vertices, the centres of
the ‘up’ triangles, and of the ‘down’ triangles. If we imagine the lattice is made of spheres, the next layer
can fall into say, the up holes. The down holes become up holes, and the vertices become down holes.

The tetrahedra of the oct-tet truss so formed, lie between the vertices and the down triangles, and
between up holes and the vertices of the new layer. Octahedra form between the up triangles and the
down triangles.

Progressing in this way, the lattice for 3t is made. This is also LA2, as the vertices advance around
stations of 2t.

If the layers rock between two stations, the packing formed is ‘hexagonal close-pack’, forming a differ-
ent uniform lattice LB2. This means the layers switch backwards on each layer, rather than advancing
through

Two more uniform tilings arise if between each layer of LA2 and LB2, a prismatic layer is inserted.
The effect is to place the next layer of balls directly on top of the previous one. Such would give rise to
LPA2 and LPB2 arrays.

A vertex, for falling on a side of a lamina, can only admit two kinds of laminae. and as such, the
layers that have the eutactic for t is a layer of the next dimension, or a prism layer of such.

The remaining laminate tilings in three dimensions, are LC2 and LPC2. These are constructed on
a square-lattice etching™] The layers have a triangle section, and basically bunt or shift the layer of
squares a half-cell in one direction. By using internal vectors in the cells, it is possible to have a uniform
tiling that cycles the axies instance by instance.

The alternate layers of triangles and squares is LPC1, the triangles move the horogon layer back and
forwards, is C1, the P is the layer of squares, which preserve the layers.

7.4 The semicubic lattice q

Although the cubic lattice is the iconic form of lattice, packing spheres in a cubic form is very inefficient.
Removing alternating spheres halves the number of spheres in the space, but allowing the remaining
spheres to expand in diameter from 1 to v/2, means that from three dimensions onwards, the packing is
V27n=2 times more efficient than the cubic.

In general, this lattice has four stations, or standing points where the same mirrors serve the sym-
metry. These points correspond to the centres of the cross polytope opposite the semicubic, and the two
semicubics of the body-centred positions. These are arranged in order as alternating between the cubics
and the semicubics of the dual. Thus if 0123 represent the four stations of the q them o2 would be one
cubic and 13 would be the other. Note these positions are relative. If you decide to occupy position 1,
then the four stations become 3012.

The semicubic is reckoned as a packing of spheres of diameter v/8. The opposite is at a distance of
V/4. The other two are in the halfcubes of v/n. In three dimensions, the halfcube is a tetrahedron, which
is smaller than the octahedron. But in higher dimensions (over four), it is the halfcube that forms the
largest cell, in eight dimensions, this is deep enough to take a full semicubic itself. The resulting lattice
here is the gosset-lattice ES.

1t An etching is the cell walls that meet the surface of the layer, such that in place of a blank plane, one with cells is
presented to the next layer.
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8 An Overwiew of Notations

Coxeter’s book Regular Polytopes does not describe polytopes as vectors. Instead, the notation is simply
the Schlafli symbol, with serves until the discussion on the Gosset polytopes. In order to make these text,
one supposes that the Schlifli symbol is a representation of the Dynkin diagram, and that the branches of
these groups derive from a curtail, this: {g 3}. Such figure is further written as 0z;. The various Gosset
polytopes are then written with a succession of leading ’3’s, eg {3, 3, 33} for 251. The Elte figures can
start from any end, such as 15, with the exception of 142, which fails Elte’s rather artificial definition.

The Schléfli symbol has no notion of anything further than what is written. While it might correspond
to the branches of a Coxeter-Dynkin diagram, the Schléfli symbol has no notion of anything on nodes.
It is for this reason that the Stott operator was included.

One can linearise these groups, by supposing the shortest branch begins not with a ‘3’, but a node
73, which would mean to count backwards two nodes. Alternately, one could use letters A and B to
connect the new node to the second or third last node. The polytope 227 becomes 4B. Using a number
to represent a string of ‘g’s, then means that something like {3,3,5} could not be so expressed. the fix
for this was to denote these by letters too: Q for ‘4’, and F for ‘5’. So {3,3,5} becomes 2F.

The new names for the polytopes ought not contain superscript or subscripts, or brackets, or quotes.
These are meant so that one can use the name as a subscript Rp nqme Or set the clear limit of the name, as
‘name’ that the reader might know what is and isn’t the name. Brackets are meant, as in mathematics, to
denote the enclosed is a single object, thus in (34 a) *b, the bracketed expression is reduced to something
that can be multiplied onwards. Ideally, subscripts and superscripts are best avoided completely.

The final allocations of symbols was based on being able to describe the second extension[™] Exactly
where Wythoff’s construction fits in is not known, but it’s based on a few scattered comments in ‘Regular
Complex Polytopes’. These were also to be included.

The symbols are designated as structural and decorative. Structural elements build the kaleidoscope,
two diagrams with the same structural items are the same symmetry. Decorative elements create an
object for the kaleidoscope to reflect.

8.1 “Wythoff” Notation

This has no connection to Anton Wythoff. It is instead, an ‘honour-name’, the main purpose appears to
mislead and distract researchers. In essence, it’s a decorated Schwarz-triangle, with the mirrors bisecting
edges appearing before a vertical bar ‘|’. It is used in Mangus Wenninger’s Polyhedra Models.

8.2 Stott-Schlafli Notation

The more common notation, and one that works in higher dimensions, is to use the modified Stott expand
notation against a regular polytope denoted by a Schléfli symbol. The modification to Stott’s system
is to start off with a zero-size regular solid, rather than a size-1 one. The regular solid is then made
by expanding surtope-o, or pushing the vertices radially outwards. The raw Schldfli symbol serves as a
name for the regular polytope.

Where Mrs Stott wrote e;Cggp, the new form becomes ¢1{3,3,5}. Mrs Stott’s notation already
supposes an expanded form of node o, where the revised notation does not.

An alternate SS notation is to suppose that the individual expands run as powers of 2, from 1, 2, 4,
8..., and that the figure in question is denoted by a dimensional letter and polytope base. We have A,
B, C, D... representing the dimensions from 1 upwards, and then t, o, ¢, i, d representing the polyhedra
in 3D, or the equivalent polychoron in 4D. There is an extra 4D regular, which is given the letter q.

A figure such as the example above gives Dig. This is a four-dimensional ..3,5, with expansions at
vertices and edges. The prism-products are simply the concatenated symbols, such as a dodecahedral
prism is ACd1. The polygons are Bp, the antiprisms are Cp. The figures are then arranged into the list
according to the first instance of the polytope.

Some others are duplicates. Ct4 and Ct6 are Cti and Ct3. Also Ct2, Cg5 and Ct7 are Co1, Co2, and
Cog. Ct8 ia Ci1. In general, 4 and 6 are the same as 1 and 3 of the dual, so Co6 is Cc3.

In 4D, the positions 4, 8, 10, 12, 13 and 14 are the same as 2, 1, 5, 6, 11 and 7 of the dual, and

referred to as such. So D@8 is the same as Dq1. 6 and g and 15 are identical from either end, but are

*2The first extension is the compact hyperbolic groups, the second is the paracompact groups.
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Key 2D 3D 4D Remarks

A B4 Cci1  Dci Measure Polytopes

Bn Bn ABn AABn Polygon cube prisms

BB BpBp  polygon-polygon prisms

C Cp ACp polygon antiprisms

Cx1 Cx1  ACx1  Platonic figures

Cx2-7 Cxn ACxn ME archimedean

Cx8 Cx8 ACx8 Snub Cube Cc8 and Dodeca Cd8

Dx1 Dx1 Regular polychors

Dx2-15 Dxn Mirror-edge archimedian

Dx16 Dx16  snub 24ch Dq16 and grand antiprism Di16

Table 12: Catalog of Uniform Polytopes

constructed from the base polytope, rather than the medial (6). Do2, Dosg, and Doy are Dq1, Dgz2, and
Dqs.

8.3 Kepler names

Kelper’s names for the various archimedean polyhedra make some sense. However, they do not generalise
all that well, and the words loose their meanings in some of the applied schemes. The numbers refer to
the Stott-index of the previous section.

platonic (P) (1 = v) The platonic figures, by a generic face-count. These might be distinguished from
other figures of the same face-count, by saying ‘regular’ P.

truncated P (3 = ve) The vertices and their verge is cut off the platonic figure, leading to a doubling
of edges of the original faces.

snub (8) A twisted figure made of triangles, the non-triangular faces belong to that of the named
polytope (Cc8 and Cd8). The same pattern is followed in four dimensions, with the Dq16 ‘snub
24choron’. Gosset provided this name.

middle (2 = e) A figure derived from bisecting the edges of platonic figures. They fall in pairs, so
Cuboctahedron, Icosadodecahedron.

rhombo-M (5= vh) A notional intersection between a middle-figure and its dual. The dual has
rhombic faces (rhombo-dodecahedron and rhombo-tricontahedron), which is the source of ‘rhombo’
here.

truncated-M (7=veh) Notionally a truncation of the middle-figure, except that the proper truncation
would have rectangles, rather than squares. Alsp rhombo-truncated.

These names are fine in three dimensions, but in four dimensions and higher, things come a little undone.
Little more than the truncate survives unchanged.

The antitegmal sequence is the intersection of duals, as one increases and the other decreases. Mapped
on a higher dimension, these intersections represent slices of an antitegum of either end. The intersection
produces an aggressive vertex bevel, which has the effect of moving the vertices along the edges, then
when the edges are exhausted, towards the centres of the hedra, until exhaustion, and so forth, until all
of the surface is worn away, and the vertices proceed towards the centre as those of the dual.

The process in three dimensions passes through truncated cube, cuboctahedron, truncated octahed-
ron. The Cuboctahedron is middle of this series. In four dimensions, the process adds two extra steps.
The edge centres of the tesseract do not align with those of its dual. Instead, the middle-point is half-way
between.

The remaining two (rCO, tCO), correspond to a truncation of the cuboctahedron, until its edge
centres are met. In practice, the cuboctahedron has a 1 : v/2 rectangle with no degrees of freedom, but
topologically, the truncated and rhombo-Cuboctahedron serve as a third truncate.
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base (1)(8) The base polytope, and its dual (8).

truncate (3) (12) The edges are shortened in situ, creating new faces at the vertices.

rectified (2) (4) The edge-centres of one are the hedron-centres of the other.

bitruncate (6) The middle form is now comprised of the truncates of the vertex-figure duals.
cantellated (5) (10) This is the rectified rectate. The bicantellate is the rectate of the birectate.
cantitruncated (7) (14) The truncate of the n-rectate gives the n-cantellate.

runcinate (9) The antiprism figure gives rise to this in 4D. Norman used the term to denote node 3,
I use it to denote the last node.

runcitruncate (11) (13) This is not the truncate of the runcinate, or any other figure. It’s not an
easy row to hoe here, so the figure is just given some sort of ‘fake’ construction.

omnitruncated (15) This one has a vertex for each flag, and represents the extreme bevelling on every
node. Such figures usually represent the Cayley diagram of the symmetry group. The dual is the
vaniated figure.

The last four items do not easily come from Kepler-style truncations, but use operators that were
first used by Mrs Stott. The fake Kepler-style names are due to Norman Johnson.

Likewise the duals can be suitably named. The following list is due to the author, but the notes
describe some alternate names.

base (1) (8) The duals of regulars are also regular.

apiculate (12) (3) Such rise peaks or pyramids on the faces of the base. Where the cube stands for
1, the apiculated cube becomes 12. The Kepler-style names is to use the Greek for thrice to five
times (trikis, tetrakis, pentakis) as the pyramid is raised over a triangle, square or pentagon.

surtegmate (2) (4) The face of these are formed when the faces of the apiculate meet in pairs on the
base of the pyramid. This gives an edge-margin tegum, which in three dimensions is the rhombus.
In three dimensions, one uses rhombo-face count hedron, giving dodecahedron and tricontahedron.

bi-apiculate (6) The faces here consist of pyramid products of the edge of one of the figures, and the
margins of the other face.

bi-surtegmate A bi-surtegmate has bi-edge times bi-margin (ie second of each), is the dual of the
bi-rectate. No examples occur in four dimensions.

strombiate (g9) The faces of this are antitegums of the vertex-figure faces. The topological net of this
is as if one were to product the dual’s surface dividers onto the figure. Such faces would lie around
the line connecting the figure’s vertices to the centre of incident faces, or the vertices of the dual.

vaniated (15) The faces are the individual flags as they strike the surface. The faces of this figure
represent in regular groups, the individual symmetry cells, and the margins form the various mirrors.

9 The Laws of Symmetry

While one can do some fancy mathematics about joining mirror-groups together, the necessary laws to
walk to the major subgroups are as follows. All of these rules are completely reversible, so by rule 1, we
can split c3a403030 into four branches cga branching from ¢, and from 0304a3c3o0, three branches from
¢ in the chain c30, each new branch c3a.

Bisection If nodes A, B,C --- are of the same kind, and that branches AB = BC = AC--- =z , and
all the branches to other nodes d, ¢, f, - - - are such that Ad= Bd=Cd---, Ae=Be=Ce---, -+,
then nodes A, B, C, --- are equal, and that any number of these can be replaced by a single node
A, connected to a 2n branch, and then as many 3 branches as needed to use all of the selected
nodes.
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Antiprism If the structure aPoP/20oPa for any value of P, is connected to a chain of 3-branches a3o0- - - 3a,
then this is a subgroup of order 2™ (where n is the number of vertices of the simplex), of a group
oPa3o--- 3040

Rectate Where aPoP/20Pa is connected to two consecutive nodes of a rectate, as 03..a3a..30, then it is a
subgroup of order n + 1, of a group where oPa is connected to 03..3a3...30. There is one additional
‘3’ in the second group.

Placing a drop of paint on one mirror will carry the image, such that each mirror connected by an odd
branch will have the drop of paint on it. Each of the several different colours of mirrors, constitutes
severally and alone, a separate symmetry. The size of these various subgroups, can be found from the
order of the original symmetry, divided by the order of the nodes representing the selected different
colours.

In the group 0304030, the first two and last two nodes, represent separate groups, the order of which
is 1/6 or 192, where 0304030 has an order of 1152.

9.1 The transport of Number

The number system is transferred across a mirror by refection in its image. Thus if it falls on a ruler, it
wall fall on the second, fourth mirror too. By the odd numbers, it ends up on every mirror.

This creates a ‘through’ number system that is the composition of all of the branches, the even
branches counting as n/2. So the through system of {3,4} is Z3Z2, which is the ordinary integer-system.
The system derived from {3,5} is Z3Z5, but Z2 and Z3 are subsets of everything else, so it reduces to
pentagonal nodes.

Even branches create nodes held at an incommensurable value. This means that it is not possible to
superimpose equal-edged lattices or figure from nodes on both sides of an even branch. For example, the
cube of unit edge has integer coordinates. But polyhedra using nodes on the opposite side of the even
branch will for integer coordinates, use v/2 in the edge, or vice versa.

The rate of incommensurability is the bridge constant of the branch, and is such that its square
belongs to the number-system of the branch. The bridge-constant is co-square with /2 4+ a for even
polygons. For numbers in 8n + 6, the bridge-constant is co-square with /4n + 3, for 8n + 2, it is
co-square with some ugly value, eg for 10 it’s G = 1/2% + %\/5

The loop constant is the cumulation of bridge constants as one goes around a loop. It becomes part
of the basic system. One use is to find out what sort of number system is used in a polygon. The even
branches are used here, the branch associated with zp21 is found from e420, which can be found from
e6o and e140. The through number system is Z3Z7, and the bridge crossings are for o, v/3 and /7. At
the even node, we find v/21, arising from crossing a ‘6’ bridge and a ‘14’ bridge. In the integer system
Z[1,r21], the values of v/3 and /7 are commense and the underlying system becomes z21 is Z7[1, r21].

In hyperbolic groups, such as 03040306*a, the through-system is found from the group Z3Z4Z6, which
is Z3. Where the first two nodes are held at ‘1’, the third and fourth nodes are held at /2. Returning to
node ‘a’ via the last branch, we find the first two nodes are held at v/6 and the last at v/3. This Z[1, /6]
is the most common class-2 integer system not derived directly from a polygon.

10 The Polytope as Vector

The notion that the reflective group represents a kaleidoscope is usually read as looking through the glass
end of the tube, and seeing the different patterns.

It can also be presented as an oblique coordinate system, the coordinates representing the perpendic-
ular to some mirror. In this way, the notional coordinates of a cube 1, +1, +1 would in this case give
rise to one of the polytopes of this symmetry. Particularly, the axies are represent by polytopes of one
marked node.

Just as x, y, z represents as a rectangular prism in the group zp2,2, the same sort of coordinate can
represent a polytope of variable edges. None the same, the polytope is still mirror-edge, as if its vertices
were carried by some kind of change-of-sign rule.

Where there is a branch greater than ‘2’, marking either of the connected nodes will cause a polygon
to appear in the hedrix of both. It carries across to the space created by any number of nodes, as long
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as there is a chain connecting the nodes. So while (1,0,0) is not a solid polytope in the group 2,2, it is in
3,5 or 3,4. In the group 3,2, the point (1,0,0) produces a triangle in the x-y plane, but nothing exists
to lift it off that plane.

10.1 Stott Addition

Since Mrs Stott’s ‘expansion’ operators amount to varying an axis by some amount, say o to 1, and
vectors reflect this sort of notion, it is only fair to label the polytope-vectors here as Stott Vectors, and
the result of additions by her name too.

In essence, the point (x,y,z) represents a position vector, which is actually the vector from (0,0,0) to
(x,y,2). Likewise, we can suppose that the same point represents a position polytope.

The uniform polyhedra can then be represented by the seven non-zero coordinates, thus. Mrs Stott
suggested that the snub form could be derived by alternating the coordinates of some (x,y,z), such that
the figure is equilateral.

Tetra Octa Icosa StottA Notes
0,0,1 Tetra Octa Tcosa I
1,0,0 (Tetra) Cube Dodeca D
0,1,0 (Octa) Cubocta  Icosadodeca 1D
1,0,1  (CubOcta) rh CO rh ID I+D rh = rhombo-
0,1,1 tr Tetra tr Octa tr Icosa I4+1D tr = truncated
1,1,0 (ditto) tr Cube tr Dodeca D-+ID
1,1,1  (tr Oct) tr CO tr ID I+D+ID
S,S,5 (Icosa) snub Cube snub Dodeca Even coords only

Table 13: The Position vectors for each Polytope

10.2 Matrix-Dot

The stott vectors are not on an orthogonal basis, and so it is harder to derive the vector-normals for
these. One can at first, convert the vectors to a right-angle system, and take the dot-product there. But
that seems too much trouble, and a better solution was to be found in the matrix-dot.

In essence, we suppose v = >, a;s;. The way to do dot products with this vector is to populate a
matrix with S;; = v; - v;. For the spherical group, this turns out easy, since the vector corresponds to
a ray from the centre to a vertex of a single-marked node. With a suitable supply of vectors, one can
make the matrix.

In the horric or euclidian case, the vectors are all parallel, and so the matrix is simply the product
of lengths. Better still, we can eliminate the dot matrix, and use a dot-product of the symmetry-vector
and the target vector.

The hyperbolic case amounted to spotting the matrix, by calculating the implied vertex-figure of
where two nodes are marked, eg x503x40 gives S 3.

The matrices were normalised to allow one to quickly write them out, without further calculations.
The matrix is symmetric, and except for the bottom right corner, the column S, ; = iS(1,j), i < j.

A
3:3:3 12| 3 4 | 5,6,7,8 0 1o
3:3+4 q|2| 2 2 | 2,2,2,2 i
3:3:5 flo|af|aaf| 53| 7 ]I;
33 Ak 2] 2] 4 41 444 | L0 11 on6
3’3,B k21 3 2 4 6 54,3,2 n-1 4 n-3
3:4:3 24|29 q on-6 n3

Table 14: Stott Matrix Vectors and Animals
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The bottom right-hand corner is called the amma is 1x1 for 3,3,n [n integer|, its value corresponds
to the dimension number.

The animal for k17 and ko1 are shown to the right of the same table.

The matrix is prepared by writing the vector in column 1, from the bottom to the top. the next term
is used for the divisor at the front. The animal is placed in the bottom right-hand column, in 3d, it may
overflow the vector, it has priority over the vector.

The body of the matrix is filled out with the second, third, fourth etc multiples, as far as, and
including, the diagonal. The matrix is symmetric, and this allows the rest of the matrix to be filled.

The divisor is applied after the matrix, is % where d is the overflow value, if diameters are sought, or
2*1(1 for radii.

An example of construction for the matrix of the 4B or 257 group.

4 4 5 6 4 2 3
5 5 10 12 8 4 6
6 9 6 12 18 12 6 9
3|4 10 5 6 ~3 |4 8 12 10 5 6
2 5 4 3 2 4 6 5 4 3
3 6 3 6 3 6 o9 6 3 6

Table 15: Stott Matrix, Left, the vector and animal, Right, complete.

The vector is written in column 1, from the bottom to the top, and overflows into the numerator. The
animal is written to the bottom right-hand corner, here evaluated for n = 6.

In the right, the empty columns below and including the diagonal are multiples of column 1. the
values above the diagonal are filled as the matrix is symmetric.

Note: This matrix corresponds to the Catalan matrix for undirected groups, but I am not sure of the
extent of meaning.

10.3 The Dynkin Matrix

A need arose, whereby it was desirable to calculate the result of a reflection in any plane. In essence,
what vector v has a dot product of 1 with itself, and o with all other vectors. Such a matrix would
consist of column-vectors, which when multiplied by the stott matrix, gives the identity matrix.

The experimental values showed a matrix with 2 as the diagonal, and the negative of the shortchord
of the angle between the planes ¢ and j, occupying D;;.

The dynkin matrix is then comprised of vectors, for which the value d; - d; would give the cosine of
the angle between them. Since these represent the normal unit to the plane, the angles between them
are the supplement of the angle between the mirrors themselves.

In essence, we can use a matrix inversion to calculate the Stott matrix, and said matrix can be found
by entering the negative shortchord for angles into the appropriate cells. Such matrix has a value that
correctly matches the corresponding Schldfli value, is given below, for again the group 221 or 4B.

2 -1 0 0 0 0
-1 2 -1 0 0 0
1f o -1 2 -1 0 -1
21 o 0o -1 2 -1 o0
0 0 0 -1 2 0
0 0 -1 0 0 2

Dij =

Values directly under the diagonal indicate consecutive nodes are linked by a branch whose shortchord
is D; ;—1. The value in the final column is due to the B branch connecting the nodes as marked: 2/2B/,
or 0303x3030Bx.

Such a matrix forms the input screen to a Lotus 123 spreadsheet[4] which can calculate the length of
any vector entered as an input field.

*3An animal in heraldry is a device on the field of a shield or quarter
*4The actual program it was released in is in a little-known but fragile spreadsheet program called Excel, by the same
people who brought you Microsoft Edlin.
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A further feature of the spreadsheet, was the ability to calculate the height of a lace prism. This was
on the behest of Dr Klitzing, who had just written a paper on the segmentotoped™] Dr Klitzing rewrote
the spreadsheet to agree with the conventions of maths that he was used to. The matrix input is now
auto-sizing. Such spreadsheet has found use with the members of the Polytope Discord group.

The name Schldfli Matriz is applied to this matrix, based on a passing remark that Coxeter made in
Regular Polytopes. The matrix has nothing to do with Schléfli. Using this name brings the same word
into two different processes for finding the diameters of the polytopes.

11 Rotational Groups

Hamilton'%| gave one of the earliest descriptions of the alternating group As as A2=B3=C%=1, C =
AB. This is the snub dodecahedron, with the faces marked clockwise, and the snub triangle in reverse.
The same definition, with C® = 1 replaced with C* = 1 or C® = 1 gives rise to the snub cube and snub
tetrahedron (ie octahedron). These represent the closest non-involuntary groups, that is, groups where
the primary elements have order greater than 2.

If you eliminate the C in this group, you get A2 = B3 = (AB)® = 1, for which the Cayley diagra
is a truncated dodecahedron, with the decagons anticlockwise, and the triangles clockwise.

12 Regular Complex Polytopes

The regular complex polytopes were described as a kind of Coxeter group, where the edges might have
an order greater than two. The regular complex polygons are derived as an extension of the ordinary
polyhedral groups.

The group p[2¢|r is defined as AP = B" = (AB)?. Coxeter found a home for polytopes of this
description in the Complex Euclidean space, where A and B represent mirrors in the Wythoff-style

construction. The meaning of ¢ is a little harder to grasp from the text.
2 2

Coxeter gives the order of p(q)r as g = m. The order can also be given more naturally
in terms of Pabc, where P is a poincaré group, and a, b, ¢ are the various mirrors placed in this group.

In the case of p(2¢)2, one can apply the normal laws of symmetry, to resulve p(q)p, where g can be
even or odd. It is derived that when ¢ is odd, then the mirrors A and B are conjugate. That is, a point
exists in the symmetry where A and B are swapped.

Much of what is written on this subject, is a matter of deriving the groups from

12.1  Metric Properties

Coxeter’s Regular Complex Polytopes gives the margin-angle for all of the regular polytopes, including
the stars, and from this, it is possible to derive a formula for the shortchord of these polygons. This
REXX subroutine returns the shortchord square, was reversed hacked from Coxeter’s tables to give the
correct dihedral angles. The format is complex(3,5,3) for 3{5}3.

complex:; procedure; parse arg cpi,Cp2,Cp3; CPX = Cp1*Cp3
if cpx = cpi+cp3 then return az(cp2)
cpi = (cpi+cp3) ; cpi = 2*xcpx/(cpx-cpi) ; cpi
cpz = abs(cpi-cp3); cpz = 2*cpx/(cpx-cpz) ; cpz
return (a2(cp2)-cpz)/(cpi-cpz)*4

az(cpi)
az(cpz)

The square of diameter is given by the usual form, that is, d*> = 4/(4 — a?)

The relation that d?(p) - d?(p{q}p gives the diameter of the euclidean polytope this equates to, that is
{3,3,5}, {3,4,3} or {3,3,5}. Such is to be expected if these polygons have edges that are polygon-shaped
in the larger form.

15 A segmentotope is a polytope where the vertices fall into two layers, separated by a height enabling unit edges. The
pre-existing notation was to use description || description. The example of note is cube || icosahedron, which amounts to
the same height as vo50030x&#x, that is, the cube of unit edge is in an icosahedron of edge 1/¢.

61856, p440

*7A Cayley diagram is a diagram which shows the members of a group in relation to the definitions. The cante-truncates
of polyhedra (ie tCO and tID) are the Cayley diagrams of the octahedral and icosahedral groups.
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When the mirrors are from different columns, the class of the resulting figure doubles.

12.2 Mirror-Groups

This is derived from the table of subgroups, and the notion that additional mirrors in a group divide
the cell into smaller units. Since each mirror divides the cell-space by a specific number, it is possible to
work out the space of symmetry ‘without mirrors’. These correspond to the various poincaré tilings in
S3.

The Poincaré group represented by the octagonny o3x4x30, has no regular elements.

Poincaré | Order 5 2 3 4/2 | 4
Tesseract | 8 - - c, C X
24choron | 24 - y c X z
Twelftych | 120 fs - f3 f2

Shape Icosa | CO | Dodeca | Oct | Oct

Table 16: Complex Groups

These map by clifford-rotations onto the various polyhedral groups, the exact mirrors form different
polyhedra in these groups. The subgroups then correspond to whether the various shapes combined are
a subset of the larger ones.

So for example, we note that the 120 group has the 8, but not the 24 group as a subset. There is a
subgroup if the the 8 groups are represented in the 120 group, so f5f3 contains cc, but not ccx, because
the larger group has no presence in that column.

The group of 24 contains the group of 8, the groups 8cc and 8x are the same as 24c and 24x.

The listed groups is slightly larger than Coxeter’s list in 'regular polytopes’, because it is supposed
that some of these groups are degenerate compounds by themselves, in much the same way that r is the
rectanguloid group, is a single entity in hr cubic group.

12.3 A description of the symmetry groups
12.3.1 From Complex Numbers to the Swirlybob

The complex euclidean space is taken to represent euclidean space with complex numbers. A straight
line still represents the equation y = ax + b, but all of these numbers are complex. We still have ordinary
parallelism, in that b can be replaced by any b;, and likewise one can pass a single straight line through
any two points. CE2 represents an important subgroup of E4, in much the same way that the argand
diagram CE1 might be represented by E2.

At the origin, we suppose b = 0, and thus y = ax. To this we introduce a further factor w = wt, to
get wy = awz. Every point circles the origin at the same angular speed, without changing the gradients
of any line. Note there is no facility to produce reversal, ie to get some wy = —awx, and we can thus
suppose that given an arrow by wdt, all points move in an individual and unique direction.

The gradient mapped onto a plane, produces an argand diagram over a. This can be mapped onto a
latitude sphere by placing a sphere with a diameter from (0,0,0) to (0,0,1), where the first two coordinates
are the Real and Imaginary axis, and the third is some height.

A ray is then drawn from a point a to (0,0,1), which strikes the sphere at A. The ray from (0,0,1) to
the point on the latitude sphere directly opposite A strikes the plane at a point (—1/a). This is exactly
the perpendicular line in ordinary euclidean geometry, and likewise in CEz2.

Distances on the sphere represent great arrows that are at an angle half of that distance. So points
opposite represent planes at 90 deg and so forth.

The longitude circle completes the picture. The sphere rotating under an isoclinal rotation is following
a swirlybob, the longitude is the passing of the day, and the latitude dictates the climate. On a planet,
the sun might follow a year-arrow not part of this set of swirls. As such there is just one arrow which
it is equidistant to, and in the same direction, and the opposite point be equidistant but in an opposite
direction. This creates a south pole, a north pole, a line of tropics and a line of artics, much as one
hemisphere of our world. The climate is governed by angles from the poles, and the angles of "longitude’
on the latitude sphere is now a ’season-zone’ to replace our 6-month difference in hemispheres.
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12.3.2 From Swirlybobs to Poincaré space

The poincaré space is created by imposing a rotational symmetry on the latitude-sphere. When an axis
is set up, this creates a rotation around a point on the latitude sphere, which leaves two arrows in place,
and the rest of the sphere is rotated by the stated angle.

The operation of various symmetry groups on the latitude sphere creates a repetition of cells on the
surface of the glome, which represents the sum images of individual points. For example, the icosahedral
symmetry on the latitude sphere, causes the surface to repeat in 120 cells. These cells do not have precise
boundaries, but usually the most compact shape is selected.

A poincaré star is the image of a point under these operations. The poincaré cell has one point from
each star. This is a modulus-like function, like the days of the week. Each week has seven days, but
the week can start at any point, eg Sunday or Monday. The effect of a poincaré group is to carry any
constellation of points in a cell to their images in each cell.

The poincaré groups are subgroups of the regular symmetries of four dimensions, with the exception
of the simplex {3,3,3}. Every polytope constructed in these symmetries will divide exactly into separate
stars under the operation of the poincaré group.

So for example, the icosahedral group gives a group of 120, the vertices of the poincaré-star is the
{3,3,5}- Any of the 15 polychora described in this group are a compound of {3,3,5}, one per vertex. The
rectified {3,3,5} has 720 vertices, and is so six such {3,3,5}s.

The poincaré stars represent the units of various integer systems in quaterions, when the point is
carried from the identity. Since it suffices to have only a left and a right quaterion to provide every
wheel-rotation, we conclude that two swirlybobs suffice to define rotations in four dimension.

12.3.3 Swirls and Swirlybobs in General

Swirlybobs and poincaré groups exist in every even dimension, and are the underlying basis of the
rotations. A swirlybob has an arrow in reference to the rotation of coordinates around a centre, which
leaves all line-slopes unchanged. The equations defining a line give n — 1 equal signs, for exmaple,
z = ay + p = bx + q, at the origin, z = ay = bxr. Multiplying through by w = wt gives a rotation that
orbits the centre in non-crossing directed circles (arrows), and such is called a swirl.

One should note that swirls thus defined are not changing direction. Indeed, these are Clifford
parallels. The swirling comes from when one views objects under motion on a clifford rotation or swirl.
Such appear to roll or rotate perpendicular to the direction of motion, relative to a fixed observer. All
points are indeed heading in straight lines. Note however that in four and more dimensions, two objects
following each other on a great arrow, can by the existence of multiple swirls, each be proceeding in a
straight line, yet roll relative to each other.

For a given singular swirl, one might suppose that points are engraved to see collinearity if the several
points exist on the same arrow. Such a point is called a swirlybob. It represents an equipartition of energy
around orthogonal modes, and so is the mode a planet might rotate in. At the surface of the planet,
the east-west axis runs along the great arrow through the observer, and the rising sphere (for being N-2
dimensions), is a swirl in that dimension. These swirls at the perpendicular to the great-arrow through
the observer, divide the rising half of the sky from the setting half. The stars on this sphere never rise
nor set, but their full track is seen on the horizon. The points higher up in the sky rise at an angle 6
from the middle sphere, and cumulate at € at the middle of their passage. the track across the sky is
half a circle, the setting directly opposite the rising.

The latitude-sphere is formed by a sphere, running from the zenith to the observer, and in the middle
of the sky (ie between where stars rise and set). The stars are mapped according to where the line at
cumulation [highest point] to the observer crosses the described sphere. This sphere is the same for all
observers, the difference being that the zenith is set to match the latitude of the observer.

The full rotation of the planet is then the product of latitude and longitude. Longitude is in the
alignment of the arrows, and latitude is represented as a point on the latitude-sphere. In three dimensions,
the latitude-sphere would correspond to the gimbal that runs from pole to pole, whilst the longitude is
set by rotating the sphere.

In two dimensions, there are two swirlybobs, clockwise and anticlockwise. The poincaré groups are
the rotation groups of polygons. The poincaré group is transferred around the sphere by rotation. The
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cell represents unique points, which are replicated to the vertices of a poincaré star. So in an arc, three
points might be carried to give the vertices of three pentagons, where the pentagon is the star.

12.3.4 Poincaré groups

The poincaré groups are created by admitting a rotation group on the latitude sphere. This creates on
each great arrow, this creates, for each object around which rotation in the latitude sphere happens, a
rotation around the space that the latitude-axis has created. The opposite points of the latitude sphere
represent arrows that are completely orthogonal, but in six or more dimensions, this is a single arrow in
the orthogonal space, not the complete space.

The effect of these additional rotations, is to carry points to represent a vertex of a solid of that
space. This solid has identical spaces, the poincaré groups carries an image to lie in each of these faces
without overlap. A point is imaged into the vertices of a poincaré star, any constellation of points will
give rise to an equal number of these stars.

Complex euclidean space creates these groups, along with additional reflections, which are implemen-
ted as wheel-rotations in a space orthogonal to a latitude rotation group.

12.4 From Poincaré space to Complex Polygons

Mirrors in complex polytopes are implemented as wheel rotations, in the same direction as the swirl at
vertices of a figure in the latitude-sphere. So the effect of the mirror is among other things, rotate the
latitude-sphere around one of its vertices, and thus rotate all-space around the hedrix representing the
point on the latitude-sphere.

When applied to real polytopes, the wheel rotation would reverse the parity vector (perpendicular to
the object in rotation), and on a half-circle rotation, will point in the opposite direction, reversing the
parity of the object. This is exactly what happens under ordinary rotation.

A mirror-rotation is implemented by holding one point on the latitude-sphere (the axle) constant,
and allowing the latitude-sphere to rotate around the axis through the still and the opposite point. The
opposite point rotates in the same line. The remainder of the great arrows are individually relocated to
different great arrows.

As with real polygons, all of these axies pass through the centre, and are thus implemented as points on
the latitude-sphere. But unlike the three-dimensional polyhedra, the mirrors are separate and non-reliant
on other mirrors. An icosahedral group with order-2 mirrors does not imply order-3 or order-5 mirrors,
for example.

For the regular complex polygons, there are four classes of mirror, being those of the Icosahedron,
the Cuboctahedron, the Dodecahedron, and the Icosadodecahedron.

12.4.1 The Icosahedron fs

The icosahedron applied to the latitude-sphere gives rise to 12 mirrors, each of which carry ten vertices
and ten edges. In {3,3,5}, the vertices and edges cross the great circles, but only twelve of these great
circles are used.

The flag runs from a vertex of a pentagon to the edge centre, which is on a different great arrow.
The net effect is that by walking the flags of a polygon, one walks the edge-map of an icosahedron. The
number of flags is 600, being five at each pentagon, and five at each vertex. The simple edge of 1, of an
icosahedron, gives The 5{3}5, while the longer edges gives rise to the star 5{5/2}5 of density 11.

From the discussion above, we note that the flags are half-edge in length, and the circum-diameter of
these polygons are the same as the polyhedron walked, and that the diameter of the polygon representing
the edge, times the polyhedron walked in the latitude sphere, is the same as the poincaré polytope.

12.4.2 The Cuboctahedron y

The cuboctahedron produces an order-2 group y. The flags of this group would follow a girthing hexagon,
with no means to escape. It needs three mirrors together, such as the vertices of a triangle face, to allow
the full polyhedron on the latitude-sphere to be walked.

An alternate polygon that can be walked on the cuboctahedron is the square formed by the diagonals
of the cuboctahedron’s squares. Both of these will be used when we mix pairs of mirrors.
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12.4.3 The Dodecahedron f3 cc ¢

The order-3 mirrors are represented by the dodecahedron, the cube, and the tetrahedron on the latit-
ude-sphere. Because these contain all of the smaller figures, these mirror-sets are also subgroups of each
other.

These in turn give rise to polygons of 3{ P}3, for P =5, 4, 3, 5/2 of densities 1, 5, 15 and 19 resp.
The stars of density 5 and 15 are compounds formed from lesser polygons. In the 3{5}3, the great arrows
runs through the apex and opposite triangle of the tetrahedra of the {3,3,5}.

The 3{4}3 has the vertices of a {3,4,3} and the mirrors of cc form a pair of tetrahedra inside a
cube. The two mirrors are different sets, because the middle number ‘4’ does not allow transport of
like mirrors across the branch. The mirrors are opposite each other, and one set of mirrors contain six
girthing hexagons, while the other passes through the six triangles that separate the octahedral faces not
involving the girthing triangle.

The 3{3}3 is the mirror group c. Its vertices belong to that of the {3,3,4}, each mirror passes
through two vertices and two edges of that polychoron. It is clear that we can not inscribe 3{3}3 in
3{4}3, because the larger figure contains mirrors containing vertices or edges. However, the stellation of
3{4}3 produces 3{6/2}3 which does contain the required mirrors.

12.4.4 The IcosaDodecahedron f; z x

Like the cuboctahedron, the bulk of this group contains order-2 mirrors, which is not enough to walk the
surface of the polytopes in question. We require three order-2 mirrors to walk the icosadodecahedron
of £2 or the octahedron of x. Because the icosadodecahedron contains the octahedron, the subgroup
relation applies. As with the cuboctahedron, we can walk any of the inscribed polygons, thus 10, 6, 4,
for the icosahedron, and 4 for the octahedron.

The octahedron also admits a four-fold rotation on its vertices, which allows for order-4 mirrors.
Such gives rise to the polyhedron 4{3}4, with g6 flags, falling to the 24 squares of the girthing squares
of {3,4,3}

12.5 General Comments

The shortchord of the polygons p{q}p is that required to produce a polygon whose diameter exactly
matches {q,p}, the product of the diameters of {p} and {¢,p} exactly match that of the poincare
polychoron. When p = 2, this yields the square, hexagon and decagon respectively.

The order of these groups are p- G, where G is the order of the poincare group order. Thus they have
G vertices and edges.

12.5.1 Polygons with two mirrors

Coxeter’s definition of regular is of polytopes whose symmetry is transitive on the flags. The vertex and
edge points can lie on different mirrors, and such polygons are formed by combining pairs of mirrors of
the same poincaré group.

The latitude-polyhedra are expanded to the same diameter, the edges now pass from one polyhedron
to another. The group order is of the form for P{Q} R, P times R times the poincaré group. So 4{6}2
is 8 times the order of the octahedral poincaré group of order 24, that is of order 192.

The effect of expanding the polyhedra to meet the same circum-diameter, gives numbers which do not
occur in the octahedral and icosahedral systems. Such are of the nature of directional incommeasurables
of the nature of a multiplication half. Such groups that arise from these, can not therefore be subgroups
of the full reflective group of the poincaré polychoron. Indeed, we shall see the appearance of polygons
with 8, 12, 20 and 30 sides, which do not occur in the poincaré polychoron.

When ‘2’ is one of the mirrors, the effect to to produce a polygon whose short-chord is 1/2 + 1/a, as
with real polygons. This leaves only 3{4}4 and 3{4}5

12.5.2 Tegums, Prisms, Wraps, and other rectanguloids

The bulk of the regular complex polytopes, like the real ones, consist of products over the line-segments,
leading in unspectacular series of tegums and prisms. The prisms are by repetition of the base, consist of
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the polygon-as-edges of the prism-product of n bases. For two dimensions, this represents the polygons
of the bi-polygon prism. And so forth to higher dimensions. The surtope consist being the appropriate
power of (1,p) with the right-hand rooted at points.

The tegum-product is over the vertices of the crossing bases, consist entirely of the drawn product of
points, that is, ordinary simplexes of n vertices. In this, the surtope consist is naturally the power over
(p,1), with the units at the nulloid.

The {4/2} and the stella octangula, are represented in every dimension by a crossing of p p-gons
whose vertices run diagonally around the bi-polygon prism.

The wrap is a usually hyperbolic function, which means that if ‘2" works in a position, any higher
number can be used. A wrap is then an ordinary polygon {p} so placed that it runs a diagonal of the
prism.

13 Circle Drawing and Curvature

The common approach to hyperbolic geometry is to treat it as a variety of spherical geometry. The
simplest action here is to use inscribed polytopes, along with a crooked ruler, to measure crooked things.
A pentagon, done in spherical trigonometry, has its chords in little relation to the sides. As an inscribed
polytope, the chords are always ¢ = % + %\/5 times the edge. This happens to any size.

We might suppose on a globe, the gimbal or supporting arc, is rendered not in degrees but in inches
of chord. In place of running from go° to —90°, the chord runs from o to 7920 miles, scale measure, such
that 180° is twice 60°.

The crooked ruler we use in the hyperbolic space is the horocycle, or line of no curvature. In essence,
it’s an euclidean line, but because the space is less curved than it, it goes in an arc, and is by no means
the shortest route.

13.1 The Art of Drawing Circles

The intersection of a euclidean space and a non-euclidean space is a circle, but points on this circle have
both geometries. A circle surrounding a pentagon, will place the five vertices at 72°, regardless of that
circle’s relative size. Note however, that the centre of the circle is not on the circumference, and thus we
need to walk the various circles, so that the centre might be on a circle.

The chord connecting two points is invariant to what circles it falls on, and this allows us to transfer
measure from circle to circle.

For example, if we suppose the polytope is {4,12}, the first circle drawn would be around the square.
For a radius equal to the edge, the edge of the dodecagon would be v/2. The next circle drawn would
enclose the dodecagon, whose diameter is V6 4+ V2. The overall diameter is them 2v/3 + 2. But as we
saw before, the arithmetic is easier with the squares of lengths, because at least the euclidean right-angle
is simply a sum.

Now, the shortchord of the girthing formed on the above figure, of unit edge, is 2v/3 + 2. Although
this is larger than two, it’s because we're using a crooked line, and in-line lengths do not add. Instead,
as in the spherical case, it can be used to find the radius of the enclosing sphere, or more usefully, the
edge length when flat.

What we find here, does not only to the flat case, but all versions of the polytope {4,12}. Just as
a sphere reduces an equatorial pentagon as it moves away from the equator, the bollosphere increases
the sizes. Hyperbolic space expands exponentially, and as such, can not be exactly reproduced in any
euclidean space. Instead, we are triangulating distances in euclidean measure, even if some of the figures
make no sense.

13.2 The Nature of Curvature

The polytopes measured with euclidean geometry, are not size-dependent. Instead, the edge is minimal
(hyperbolic) or maximal (spheric), as the figure is set as a tiling in a plane. For those used to euclidean
geometry, it might appear strange that doubling the edge length might make the figure have right-angle
corners. But this is the nature of circle-drawing in all non-euclidean geometries. The equatorial pentagon
has angles of 180°, but at various latitudes, this can be 120° or at a zero-edge limit, 108°. Likewise,
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it is possible for the angle to be less than 108° in hyperbolic space. The tiling of {5,4} has right-angle
pentagons.

When a cloth is placed on a surface, it will either ripple or ruffle if the curvature is greater or smaller
than the surface. For example, a skull-cap sits flat on someone’s head, but on the table, it would ripple.
The circumferences of circles is less than 27 radii, and so it will produce ripples radiating from the centre,
as much as water ripples away from a dropped stone. When the same cloth is placed on a smaller sphere,
the circumference is longer than that of the surface, and so it will tend to bunch up radially, or ruffle.

We might note that in non-euclidean geometry flat and zero-curvature have different meanings. Flat
means that the subspace has the same curvature as all-space. A geodesic on a sphere is flat, even though
it is a circle. It is concentric with the sphere. Zero-curvature means that the subspace has a euclidean
geometry, is is of the same curvature as our crooked ruler.

The spaces we are dealing with are homogenous and isotopic. This means that there is no grain or
implied direction, and that rotation and motion are not either direction nor position dependent.

13.3 Gravity - an aside

The various theories of relativity talk of space-time. The geometry of this is that of Minkowski, which
features four axies, one of which is treated as being ict = ctv/—1. One might note that the numbers are
all real, and complex values like 2 4 ¢ are not encountered.

Space-time exists in ordinary relativity: the plot of cars travelling along a road and when they might
meet, is an example of space-time. Space on one axis, time on the other. A stack of slides for an
animation represents two space-axies and one time axis. The characters snake from bottom to top of the
slides, each motion being imperceptible from the next. Turning to slide 108 allows us to see the state
at that point, but the objects, even for being cartoons, are not representation of the character we might
deal with, but a twisting prism with sections in motion. We are not dealing with this.

Another model is that of a table, with various depressions in them, and heavy spheres sitting in these.
This is not a space-time graph. Instead, it represents two dimensions of space, coupled with a vertical
potential energy, which gravity and height do a very good job at. What happens is the table is meant
to show smaller spheres cued as in billiards, their motion being affected by the curvature in the table.

When it is said space is curved, what is meant is that a circle in degrees, has a varying number of
inches per degree. Space being in tension, then has more inches per degree towards a heavy mass than
away from it. It is possible to take this model, and derive a space of the right curvature.

Given E = mc? and F = G%m as the large-scale approximates, one might imagine that gravity is
the excess of length inside to outside of the sphere. It is not all that hard to show that any circle drawn
around M has a circumference increased by 2rGM/c?. In turn this is distributed over R, which gives a
pulling-in potential of GM/c?R, and the gradient as GM/c?R?.

You can make such a space, by imaging that for a circle of diameter r, the centre has been pulled in to
make a circumference of 47r. Circles outside the mass would have a circumference of 27 R but 27 R + r.
Space would ruffle in the euclidean. Putting values of r in, gives for the earth, a value of 4.432,96 mm.
Such would be imperceptible over 6,000 km.

Space, as far as we can tell, is essentially zero-curvature. Given various models of it suggest that
curvature might vary from positive to negative over small regions, the present model is more apt than
the three Euclid-style versions (with various replacements for postulate V).

One might also note that geometry by itself can not produce a force. It supposes some distribution
of point-like forces to create the force.

14 Hyperbolic Geometry
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