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Abstract

A new multi-dimension version of the Kepler-style names for the Uniform-edge and Uniform-Mar-
gin polytopes.

1 Introduction

There is little comfort in complaining about the lack of a clear terminology for the higher dimensions. But
instead of doing this, I intend to create a set of terms that span the dimensions comfortably. The fault
here lies in that common words have different meanings that belong to objects of different dimensions
outside of three dimensions.

A line in the sand, a dead-line, the front lines, to toe the line, are divisions of space. In a land of four
dimensions, the surface of a planet is three dimensions, and in four dimensions increase a dimension, to
keep pace with solid space. The bee line, the railway line, the bus-line, are trips from point to point, and
do not increase dimension.

The common pattern is to suppose that the dimensionality of the 3d case is correct, and invent new
terms for relative to solid. To this end, we get a facet having many faces, since the facet has moved up
a dimension, while a face has not. A projection of the Schéigel-diagram of a polychoron (4d polytope),
presents itself as a foam of the surface elements, a foam of cells, so to speak. Cell is elsewhere used to
represent a room in a foam or tiling, and it is no good to extend the meaning to include include specific
elements of a polytope.

A plane is a dividing space. Mathematically, we might represent a plane as one equal-sign, viz z = 0.
In 3d, this is where our descent under gravity ends, and in higher dimensions, the descent against gravity
is best represented by z = 0, or one equal-sign, regardless of how many dimensions there are. One
equal-sign divides space.

The armies that surround cities do so, by forming a solid shell in the plane. They do not form any
cover over or under the city, but follow the city limits. It’s a matter of two equal signs (z = 0,7 = 0),
which divides the surface of the planet into an ‘inside’ and ‘outside’. The terms inside and outside have
meaning only in terms of the object is solid. Thus the surface represents the bounding limit of a solid.

The dancers do so around the maypole. The maypole is vertical, but the dancers do not invade its
space (which is the vertical line that contains the pole). Instead, the action happens in a space that is
orthogonal to it: the ground. We use the terms like ‘around’ and ‘aroundings’ around such spaces.

Stems deriving from face are held to denote fragments of spaces of one equal-sign. So when one is
facing off against another, the intent is to block all routes, like a wall.

Although one might suppose a line is made of points, and a 2-space (hedrix) of lines, and so forth,
the reality is that these are derived from the intersection of planes. In three dimensions, a point is the
crossing of three planes, and so has three equal signs. The spaces of fixed dimensions have new names,
we we give in the next section.

2 The Fabric of Space

The word polyhedron is reanalysed as three stems, poly-hedr-on. Since hedron refers to the face of a
polyhedron, the word is read as if to mean a closed bag - made of 2d - patches.



Supposing this, we invent the suffix iz to denote a fabric that the patches might be cut. So hedra
“2d oatches” are cut from a hedriz “2d cloth”. The nature of the cloth is that it is nominally unbounded.
That is, we are not to find any limits to the cloth for the applied end. It can also refer to the a full
unbounded (aperific) extent.

By replacing various parts of the stem, we derive a more extensive range of names for the higher
dimensions. Using the stem chor for hedr, the expression becomes gd fabric and patches. A polychoron
is a solid in 4d, specifically a closure of 3d patches. A set of names is provided for dimensions o to 8.

Teel A fabric of zero dimensions, such as a button. Teel is related to the greek telos “journey, destin-
ation”. Since “tele-” is already an active stem, the vowel is lengthened, to denote the destination.
A teelic infinity is a model which supposes the destinations of numbers is less than the path, such
that 143 = 2+2 both end at 4.

Latr A fabric of one dimension, such as a thread.

Hedr A fabric of two dimensions, such as a cloth. The word hedr relates to a seat, the illusion that a
dodecahedron might make a beanbag. Cat-hedral is the over-seat of the church.

Chor A fabric of three dimensions, such as a brick. It is related to camera, chamber. The space we live
in is a horochoriz ‘horizon-centred 3d fabric’.

Tera, Peta, Ecta, Zetta, Yotta The fabrics of 4, 5, 6, 7, and 8 dimensions. They are the metric
prefixes representing 1-10%", the fabric from a line of a kilo-dot, would have a tera-dot, peta-dot,
etc points. The correct prefix for 6d would be ezxa, the resulting fabric is exix. But since this would
dissolve to ectiz, the stem ect- was regularised throughout.

Replacing poly with other stems, provides us with words to mean an assembly of patches, not necessarily
closed, such as a multihedron (such as the net of a cube).

Apeiro- and peri ate derived from the greek, eg apeiron "boundless, as a sea or desert". A perimeter
or periphery is a limit that contains the object of interest. It happens in the (sub-)space where the object
is solid. Where the object might be contained within a patch of the space, it is bounded. A tiling is
evidently unbounded, and so is an apeirotope, but in some spaces, even all-space is bounded.

Infinito is used to represent without number. A winding of a long chain around a spool makes for
the prototype of an infinitolatron.

3 The Products

To be a product, there ought be a mathematical mapping of some property, that the property of the
product is the product of the properties (of the factors). Each of the five regular solids in every dimension
defines a product.

The surtope products use the surtope-count as the product-property, the resulting product is of the
same form as the factors.

Repetition Products of repetition make a copy of the factor at each point of the co-factor. The cube
is an example, for at each point of height, the section is a copy of the base square. Likewise, one
might imagine for each point of the square base, there is a copy of the height.

Draught The products of draught is made by drawing a line AB between the points A of one base, and
B of the second. the original elements are kept. An addition to the surtope equation of an element
1 is made to the right, that point x point = line. A product of draught increases the dimension.

Content In the product of content, the whole of the element’s surface and interior are used in the
product. For this to work, an element 1 is added to the left of the surtope equation, to stand for
the interior.

Surface The product of surface is such that the content of the factors are not counted in the product,
instead, the surface of the product is the product of the surfaces. A product of surface reduces
the dimension. The draught of surface increases and decreases the dimension by 1, leaving the
dimension the sum of the factors’.



The coherent products use the content-measure as the product-property, the content of the product
is the product of the contents. It is called ‘coherent’, because the product-powers of a unit line defines
the units of higher content. The square and cubic measures are examples of this.

Radiant The radiant products suppose that the surface of the solid represents a value of 1 in every
direction, and that for all other points, it is a multiple of the distance from the centre 0 to the
surface 1. A radiant of % represents a surface of a copy % of the size.

The products of elements X, Y, Z, are represented in cartesian coordinates as x,y, z, the surface
being as some function of these. For example, the prism product is represented as max(x,y, z).
Note that this value still produces a radial value, and the surface of the product is also when it is
equal to 1.

3.1 PRISM = repetition of content = max()

Prism is derived from the Greek word for offcut. Such might be imagined that one has a hexagonal bar,
and from it cuts equal measures of length. The result is hexagonal offcuts or prisms. In general, one
might suppose that where the points are marked as belonging to a factor of the product, the prism is
the intersection of the various spaces for the marked areas.

The canonical cube is the product of the line-segment (-1, 1), which leads to the coordinates £1, +1, ....
The radiant function is represented by abs x;, the surface is formed when any one of these equals 1.

The radiant product here is max(by,bs,--+) < 1. It provides coherent units represented by the
measure-polytope (square, cube, tesseract, ...) of unit edge.

The surtope adds an element to the left only, so a cube = 6h 12e¢ 8v becomes 1c 6h 12e 8v being (1e
2v)3. This equation might be written without the identifiers ¢ = choron (3d) h=hedron (2d), e=edge
(1d), v=vertices (0od), as 1.2.# 3= 1.6.12.8.#. The hash # tells us that this item is not used in the
calculation.

3.2 TEGUM = draught of surface = sum()

Tegum is derived from a Latin word for cover. It is related to toga, and thatch. The tegum provides by
draught, a cover for the new interior, by drawing[] points of surface from each element.

The canonical tegum is the rhombus, octahedron, 16choron, etc. This is the tegum-product of the
lines (-1, 1) on each axis, the radiant function is again abs 1, the surface given by sum(zq, z,...) = 1.

The surtope consist is augmented by no content term #, and a term to the right for the nulloid?]

The octahedron has 8 hedra, 12 edges, and 6 vertices, or 8,12,6. The tegum-form is to enclose this in
#, 1, as #,8,12,6,1. This is the cube of #,2,1, which is a line in tegum-form.

There are no general-use units for this as yet. The regular cross-polytope is the tegum-power of its
diagonals, and thus for a cross-polytope of unit edge, for having a diagonal of v/2, has a volume of V2"
in tegum units.

However, the series of units is coherent with the definition of content as the moment of surface, that
is, C = [r-dS. Taking the origin to be the corner of a cube, the content of a cube is n times its face,
and by recursion the measure-polytope is n! times the tegum-product.

3.3 CRIND = rss()

The circle, sphere, glome, represent a class of regular solid (although not a polytope, it does have a hard
surface), as such might be represented by the product of its diameters. Varying the diameters give rise
to a family of ellipses and ellipsoids.

The canonical sphere is 2 + 23 + ... = 1, represented again by the diameters |-1,1] in each axis.
Putting these axies to different values gives rise to ellipsoids.

It ought be recalled that ordinary folk measure circles by the diameter, and not the radius. As such,
an eight-inch plate has a diameter of eight inches. A circular inch is the area of a circle, the diameter of

*Draw as in to draw glass or what chewing gum does when separated
2The nulloid is the lower point of incidence, representing a dimension of -1. In draught-products, the dimension-number
is increased by 1 to match the vertices of the simplex.



which is one inch. Such were used before calculators, to eliminate 7 from calculations, when it was not
really needed.

For measuring volumes, the typical unit is a cylinder inch, being a cylinder of unit height and base.
The proper coherent unit is a spherical inch, being a sphere of unit diameter, 2 cylinder inches = 3
spherical inches.

3.4 PYRAMID = draught of content

The simplexes are the pyramid-power of its vertices.

The canonical simplex is represented by the points (1,0,0,0..), (0,1,0,0..), representing a face of a
cross-polytope of higher space. The plane is represented by an n + 1 space, of points of a common sum
(here 1). By using a different sum for the coordinates, it is possible to shift the points around, and still
keep the same lattice.

The product adds a dimension for each time the product is applied. So the product of two lines gives
a tetrahedron, the rectangular sections give x% of one base times y% of the other base, the variance in
X, y are not in the lines, but in the height or altitude of the figure.

The volume of the regular simplex is derived from the moment of the face. The point closest to the
centre is % on the plane, and the length of this in every axis, (%, %, ..., gives y/1/v. The volume of the
part in the all-positive section is 1, in tegum measure, and thus the volume of a simplex in v vertices, of
edge v/2, is v/n. From this we find the volume in prism-units to be v/n + l/ﬂnn!

The Pyramid surtope form adds a ’1” at each end, so a line is 1,2,1, being a point (1,1) squared.

3.5 COMB = repetition of surface

The comb product is a product of at least polygons, including the euclidean line-tiling (horogo. in
the case of polygons it forms a tunnel or comb, in the sense of tilings, such are also called honeycombs.

The canonical tiling is the euclidean grid of integers, represented by the powers of the number-line.
The corresponding powers of the number-line gives rise to the square, cubic, tesseractic, tilings. One can
use other tilings in this process: the hexagonal - horogon tiling is a tiling of hexagonal tiles.

In hyperbolic space, this product still exists, but the horogon is the primitive or first power. The
powers are still bounded by squares, cubes, etc, four at a margin, but it no longer exists in a cartesian
coordinate system.

The second form is to produce toruses. The regular torus itself is the comb-product of two circles, the
larger circle, and a smaller circle representing the cross-section. This might be polytopised by replacing
the circles with polygons, such that one has a bent column, made of little pyramid-sections. Note there
is no rotation in the comb-product.

In four dimensions, it is possible to have a decagon-dodecahedral comb. A hollow tower is made of
pentagonal prisms, the base fitted together to form a dodecahedron, the height being ten units high. It
can be converted into a torus in two different ways.

sock In this method, one supposes that a bar (like the leg), runs down the centre of the tower. The
tower is then peeled outwards as one takes off a sock, rolling down until it connects with the base.

hose This method connects the top to the bottom by bending the bar into a circle, such that the two
join, as one might connect the ends of a hosepipe.

The products produce distinct items. The first is the result as if you poked a line through a glome,
giving the equal of a hollow-sphere slice. A string passed through this hole will form a link that one
might lift it.

3.6 Bracket-topes and Coherence

The three coherent products are represented by the brackets [Prism|, (Crind) and <Tegum>. These are
applied over a set of perpendicular lines, represented by letters, using ‘i’ as the default. The brackets

3The Horogon is a horizon or infinite-centred polygon, the edges are orthogonal to rays that converge on the horizon.
Other infinite polygons exist in hyperbolic space, such as the bollogon, whose edges are perpendicular to orthogonals of a
straight line



might be nested, but a parent can absorb a direct child bracket if they match, so ((II)[I1]) = (II[IT]) =
circle-square crind.

In three dimensions, one might, apart from the regulars [III] cube, (IIT) sphere, <III> octahedron,
have a variety of other bracket-topes, such as [I(II)] cylinder, (I[IT]) square crind, and <I(II)> bi-cone.
The square crind is the intersection of cylinders at right-angles to their height.

The products are coherent to their own set of units, and thus it is possible to find the volume of a
bracket-tope by way of unit-changing. For example, the volume of a square crind (I[I]) is first to find
[II] = 1 P2, and convert this into C2 units. 7 P2 = 4 Cz, so the area of [II] is 2 C2. Multiply this by

pid _ 2 P3 units.

C1, and we get % C3. Since C3 = ¢ P3, the volume is &~ = £

Note that it is not correct to put these units in the same product. This is because arithmetic
multiplication maps onto three entirely different products. The product covering P2C1, for example,
does not state the overall parent, which could be P or C (or even T). However, it is correct to put P2P2
= P4 as a matter of coherence.

The ratio of volumes run Pn/Tn = n!, Pn/Cn = n!l/(1,7/2)", and Cn/Tn = (n — 1)!(1,7/2)". The
factor (a,b)™ corresponds to an alternating power, that is, the first n items in the list a,b,a,b,a,b....
The double-factorial is a descent from the value, such that the value is always greater than zero. So
m=7-5-3-1.

P/Cruns (1) =1, (2)

C/Truns (1) =1, (2) =

4/m, (3) =6/m, (4) =32/7%, (5) =60/pi%, (6)=384n3, (7)=840/x3
/2, (3) =7, (4) = 37%/4, (5) =272, (6) = 1573/8, (7) = 673.

4 Kepler-style constructions

Progressions are transformations from one polytope to another. It can be as simple as scaling, as we
have met in the radiant products. New faces might be formed as the older faces separate. Such might
be various prisms or pyramids (that is, the content products), or a pyramid erected on a slice (such as
converting a line to a square, giving a triangular prism. Other progressions might represent the time
scale of some dynamic process, or a convex hull thrown over a compound of like figures.

4.1  Antiprisms

The largest class of uniform figure, not derived from regulars or their prisms, is the antiprism. These
exist for all polygons, and consist of two identical polygons, one rotated by half an edge. In between is
a row of triangles, and a set of edges zig-zaging from top to bottom and back.

Such zigzag is reminiscent of the lacing on a drum, or a shoe, which does exactly this between the
top and bottom, or the two sides that close on a shoe. Since many lace prisms are made by defining
parallel sections, and lacing these together, it is a suitable term for such compound-connections.

The general antiprism is taken as two polytopes in dual position. For each surtope of the top, there is
a matching surtope of the dual at the bottom, these in the regular instance would be fully perpendicular
at the centre of each. In the antiprism, these are set in pyramid product, the progression of height
converts these into prisms of the matching surtopes, one increasing and one decreasing until exhaustion.

The antiprism sequence is the expansion of a polytope, such that the original faces are kept. There
forms prisms between each face, a margin-line prism, and so forth until the vertex, which is replaced
by the faces of the dual. Because these elements are orthogonal, these are not restricted to any shared
symmetry: in the 24chora, triangle-line prisms form between the faces, and line-triangle prisms along the
former edges. The vertices become the dual of the vertex-figure, or the face of the dual, giving octahedra.

This sequence is usually one of the first to be seen.

The tegum product of antiprisms, is itself an antiprism. If Aa, Bb, ... represent the axies of the
antiprism, the upper and lower cases are duals, then there is a pyramid face ABC... opposite a pyramid
face abc.. as an antiprism. It follows also that any case pattern can be used, eg Abc.. vs aBC.. The
same polytope can be antiprisms to many different figures.

4.2 Antitegums

The dual of an antiprism, is an antitegum. It exists as a regular construction from polygons for all
numbers. Such is formed by the intersection of lace cones, in this case, the cones are point-pyramids of



the duals, the expanding portion of one intersects with the contracting portion of the other. One might
suppose two people are shining lights at each other, the light projecting a perfect pyramid of the filter
at the light. Where two triangles are used, and rotated opposite each other, a cube would arise.

Lace Cones can be best seen in polytopes such as the tetrahedron and cube. In the case of the cube,
imagine that the three faces around a vertex are red, and those around the opposite blue. The red faces
would extend to a full octant of space, as would the blue. But for the intersection, we see that the red
light ends that of the blue and vice versa. In the case of the tetrahedron, we see that one could imagine
two red faces meeting two blue. The section here is a simple ‘V’ shape. However, this is not solid, and
so is extended in all directions perpendicular to the V.

Likewise, three red faces and a blue face, is the intersection of light-cones from a triangle and a point.
The triangle is solid in 3d, but to render the point, we need to expand it in all directions perpendicular
to the antitegum axis. The dual of pyramid products of all kinds, are by the intersection of solid lace
cones of the dual of the bases.

The antitegmic sequence is the expansion of one figure, intersecting the reduction of the dual. The
sequence forms the families of truncates and rectates, the truncates are as the intersection is consuming
the n-surtopes (vertex, edge, &c), while the rectates are when this surtope has been fully consumed, and
the vertex is standing at the centre of it.

The Hasse Antitegum is the incidence diagram of the base. Against the axies, the hasse antitegum
provides layers of vertices, one for each surtope. A surtope is incident on another if the representing
vertices fall on the same surtope of the antitegum. All of the surtopes of an antitegum are antitegums,
and so an incidence represents the long axis of some lesser antitegum.

When the diagonal is taken to the bottom of the full antitegum, the incidence is between the surtope
and nulloid®] The top-most vertex represents the content. Between these are the added ‘1’s that we
make in the various products. It is also the source of the additional ’2’ in Euler’s characteristic equation
for odd dimensions. For example, the cube gives 6 — 12 4+ 8 = 2, for having left out two terms of —1, one
at each end.

The hedra of the antitegums are always rhombuses. If some surtope n + 1 is incident on some n — 1,
there are exactly two surtopes n incident on both. This is what Norman Johnson means by a dyadic
polytope, since the rhombus by itself is the Hasse antitegum of a line-segment or dyad.

4.3 Truncation and Rectification

The truncation and rectification is provided by the intersection of the descent of the dual. We suppose
the outer is descending on the inner, both retaining their common centre and symmetry.

When the surfaces first meet, the vertices of the inner just touch the faces of the outer. This is the
zero-rectate, the proceeding where the inner expands to meet the outer, is the zero-truncate. As the
vertices emerge, they are cut off or truncated. The new vertices seek to shorten the old edges, and a new
face is formed at the old vertex. This continues to the first rectate, where the outer’s edges have been
shortened to zero and the vertices meet in pairs.

As the outer continues to descend, the vertices head towards the centres of the polygon-elements.
This is the second truncate, ending when the vertices join up in the centre of the 2d element (at the
rectate). This continues until the n truncate, where the outer polytope has passed through the surface,
and and all is left is the outer-polytope shrinking to vanish at the centre (n-truncate).

The antitegum-sequence is the time sequence of the truncates and rectates. It can be seen that
there are a pair of lace-cones which represent a point-inner pyramid expanding to the left, and a second
point-outer contracting to the right.

The duals of these is a similar process, except that we imagine that a rubber sheet covers the polytope,
and the resulting figure is the hull of the inner and outer parts.

As the inner part expands from zero, it is the zero-apiculate, ending in the zero-surtegmate. As
the inner figure crosses the surface of the outer one, the old faces of the outer figures are replaced by
pyramids, whose apices are the vertix of the inner one and the margins (wall between faces) of the outer.
This is the first apiculate.

4The Nulloid is taken as a surtope of -1 dimensions. It is incorrectly associated with the empty set, for being part of
every surtope. But it’s not a part of surtopes that are not parts of the polytope, and its existence is a mark that these
various elements have been brought into a unity



The first surtegmate happens when the pyramids line up in pairs, and we have a tegum-product of
the edges (El of the inner one and the margins (M1). Where first the faces were pyramids against the
vertex, they now come to be pyramids against the edges of the inner figure, and M2 of the outer.

The second surtegmate comes when the polygons of the inner figure have broken to surface, while
the M2 of the outer ones are visible, so The faces are tegum-products of E2 of the inner and M2 of the
outer, and so forth.

4.4 Cantelates and Cantetruncates

The first-truncations and first-rectification of a n-truncate gives the n-cantetruncate and n-cantelates.
The duals have no special construction or name. The term is borrowed from Norman Johnson.

4.5 Runcinates and Strombiates

The process of runcination is to push the faces outwards, without changing the size of the faces. As the
faces separate, the convex hull creates new line-prisms on M1, E2-M2 faces, all the way to the vertex.
This becomes the face of the dual. Allowing the original faces to shrink to nothing, causes the runcinate
to turn into the dual of the figure.

The dual figure is the strombiates. Imagine you have an polytope, and then draw on its surface, the
elements of its dual, as would be projected by an central lamp. The faces are divided into something that
preserves the face-vertex line, and all flags there-attached. You can push one in relative to the other.
The name comes from the faces of the figure are antitegums of the vertex-figure of the faces of either,
which are duals at each end of the vertex-face line.

The sequence of runcinations leads to the antiprism of either of the duals.

The bulk of faces of a runcinate are prisms of a surtope and its matching arounding of the dual.
This gives a cycle of prisms, which leads to my old name for it (prism-circuit), and Jonathan Bower’s
-prismato- infix. The simplex prism circuit, or runcinated simplex, is the vertex-figure of the tiling Aj.

4.6 Omnitruncate and Vaniate

The simplex represented by the centres of each surtope, is taken as a simplex vg, vy, vs, ..., is called a
flag. If the rays from the centre are adjusted so that these flags do not align with any neighbouring flag,
then this is the vaniated polytope, meaning, its flags are made into faces.

The omnitruncate corresponds to having a vertex in the interior of the flag, in such a way that edges
need to be dropped to its images in any adjacent flag. This result gives the Cayley diagram for the group,
that is, each kind of operation on the group is met by a walk from vertex to vertex of the omnitruncate.

5 Developments

A development here represents a change of the structure of a solid, to allow its representation. Such are
the art of the modeller. In such, these represent various adjustments to model something that is not
directly rendered as a model.

Atom A packing of spheres to resemble a chemical lattice. The models of atoms showing bonds are
more a case of a spheration of the situation.

Bevel To act as to plane away sharp edges, to leave more rounded elements for a surtope. An example
is an edge-bevelled cube, where the vertices and edges are replaced by elongated hexagons.

Frame The surtopes up to a given level, such as edges. The most common form is to provide a see--
through presentation of a polytope. A hedral frame of four dimensional polytopes, as projected
onto three dimensions, looks like a foam of cells, whence the misuse of the word ‘cell’ for face.

5The style here is to count surface polytope as edges of given dimensions, eg Eo for vertex, E1 for edge, E2 for hedra,
and so forth. Likewise, the down-count is to count Mo for the face, M1 for the margin, M2 for the second-margins (ie n-3
element. For a polytope of n dimensions, the Mm is E(n-m-1). In 3d, a polyhedron has Mo = E2 = polygon, M1 = E1 =
line, M2 = Eo = point.



Periform The stem ‘peri’ is allocated to mean the outmost limit. The five-pointed mulleﬁ is mathem-
atically a zigzag decagon, is the periform of the pentagram. Even so, the stitching of these mullets
onto flags might include the proper edges of the polygram.

Spheration This is to replace vertices and edges with spheres and pipes, as much as if a sphere had been
run along every point of these items. ZomeTools produce a spherated edge-frame of polytopes.

Surtope Paint A notional paint or glitter, sprayed onto a curved fabric, would produce a map of
surtopes of the same topology. Applying more paint makes the surtopes smaller. For example, a
cone gives rise to a pyramid, the more paint increases the number of edges at the base.

6 Progressions

A progression is an alteration of a polytope or solid, by means of increasing or reducing the surtope by
a solid product (prism or pyramid), such that it might change to a second polytope. Such a progression
is usually in a line from A to B where these are taken to be separate layers.

The idea behind progressions might be seen with the sectional layers of polytopes. A point expands to
an icosahedron, and this becomes an apiculated dodecahedron, and so forth. It is noted that the convex
hull overall may be larger at a given layer, than the arrangement of vertices suggest. This is because
uncompleted surtopes are still running.

That one polytope can progress to another is demonstrated by the simple expansion from a point.

6.1 Progression-space

For each axis of some space, each point represents a state of some figure in progression. The simplest
case might be size, but operations like runcination (a series of increasing size and surtope bevelling such
that the original surtopes are unchanged), are equally valid processes.

An additional axis is provided, representing the altitude, or point in an orthogonal space where the
action might be said to happen. From this a progression-polytope might be constructed by taking at
each point of the altitude, a prism-product of the progressed elements.

Altitude Axis1 Axis2 Axis 3
(1,1,0) triangle line point
(1,0,1) triangle  point line
(0,1,1) point line line

Such represented the earliest implementation of what would become a lace structure. Because at each
point of the altitude, it is a prism-product, the appearance of a point represents the identity element.
Without this point, the product would be zero. With the point, it appears as having no section in that
axis.

7 Stott Vectors

The modern approach to polytopes begins with Mrs Alicia Boole Stott’s method of progression by
expansion. For a given figure, such as a cube, it is possible to push the vertices, edges, or faces outwards
without changing the size. New edges will appear perpendicular to the push, such that continuation of
the push will make these new edges longer.
Mrs Stott’s construction starts with the regular solid, which means that v has already been applied. A
contraction is needed to remove the v from the set. In practice, if one starts with a microscopic version,
then all of the operations add.

One sees that where v + h are present or both absent, the figures on the dual rows are equal. This
leads to a notion that this figure (eg CO cuboctahedron or ID icosadoedcahedron) are somehow more
important than the regular figures.

6 A mullet in heraldry is the ‘stars’ one sees on flags and the like



v | vt+e e et+h | h | v+h | v+e+h
tetrahedron | T | tT 0] tT | T | CO tO
octahedron O] tO | CO| tC | C | rCO tCO

cube Cc| tC | CO| tO | O | rCO tCO
icosahedron I tI ID tD | D | rID tID
dodecahedron | D | tD | ID t1 I | rID tID

Applying this to the Cggp ‘60ochoron’; leads to fifteen figures, many of which were new with this
operation. Mrs Stott’s notation was to use a subscripted e, with dimension-numbers for the vectors
(v=0, e=1, h=2, c=3), such that a truncated cube would be e ;C, or e; 20. Other authors use different
letters: Coxeter uses t, and Conway uses a. It is the same effect.

7.1 Wythoff’s mirror-edge construction

Wythoff observed that Stott’s construction can be simplified by reflecting a construction in one cell of
a symmetry group, and then reflecting this as in a kaleidoscope. For this to work, one might place the
vertex on or off each of the mirrors. When a vertex is off the mirror, an edge forms between the vertex
and its image. The different mirrors make edges that correspond to the v, e and h edges above.

It is possible, to make the edges of any given length, since there are equidistant surfaces parallel
to each mirror, and the bisector between any pair of mirrors, passes through points that are the same
distance of those mirrors. This is possible if the shape of the kaleidoscope-cell is a simplex/[7]

One then has the notion of a position polytope. A vertex can be placed in any point, giving a coordinate
for example, (v,e, h). This is reflected into every sector by the kaleidoscope, in much the same way that
a prism gives (+v, e, +h). Indeed, this particular system is a specific example of Wythoff’s mirror-edge
construction, based on the rectangular prism model.

The main interest of mathematicians is to consider values of (0, 1) for the coordinate, where Wythoft’s
construction allows any size, for example, the rectangular symmetry value of v = 1,e = ¢ leads to the
golden rectangle.

The matching dual process is Wythoff Mirror-Margin. Each wall of the kaleidoscope reflects the whole
inner region, so that every margirﬁ acts as a mirror. The span across the kaleidoscope is tangential to
the vertex on the sphere, so if the vertex falls on one or more mirrors, the corresponding mirrors do not
produce a margin between faces, but a mirror internal to the faces.

Stott’s expansions then produce a position polytope, the space of such polytopes giving a progression
space. A line between any two points in a progression-space corresponds to a transformation of a polytope
at one end to that at the other. The position polytope is described as a vector in the kaleidoscope. Such
vectors are regular vectors, except that because the coordinate system is oblique, we need to do a matriz
dot product to find various lengths. The corresponding matrix normal, gives the radius or diameter of
the polytope in question.

7.2 The Stott-Schlafli Notation

The Schléfli notation is a construction of regular polytopes. It correspond to sill-aroundings, where one
counts the number of faces around the sill, or second-order margin. This corresponds to a surtope of S-3
dimensions.

A polygon is denoted by the number of sides, thus ’5’ for pentagon.

A polyhedron is denoted by a pair of numbers, the polygon, followed by the count around a point
(sill in 3d).

A polychoron is denoted by the polyhedron, followed by the count around the edges (sill in 4D), and
so forth,

71t does not work when another shape is used. For example, the symmetry of a tiling of hexagonal or triangular prisms,
makes for a triangle-prism. The height of the prism, relative to the base, gives rise to a uniform tiling in only seven possible
heights.

8 A margin is a surtope that divides the surface, or S-2, where S is the solid space of the figure.



Above two dimensions, this gives a surprisingly short list. Coxeter uses the regular polytope as the
name of the kaleidoscope, so the truncated 60o-choron becomes tg1{3,3,5}. The names get messy when
the kaleidoscope is not a regular figure.

The fix for the non-regular symmetries is to use a pseudoregular trace, which we shall come to soon.

By itself, the schlédfli symbol gives rise to a number of interesting properties of the polytope, which
we discuss a little later on.

8 Dynkin and Lie groups

The symbol variously called the Dynkin or Coxeter-Dynkin symbol, was separately found by Coxeter,
by Dynkin and by de Witt. It is a fairly straight-forward construction from the defining Lie group. It
is less straight-forward for polytopes, yet Coxeter used its construction to fill in all of the undiscovered
Wythoff-mirror-edge figures. In essence, if you have a simplex-kaleidoscope, you automatically have a
raft of uniform figures, corresponding to putting 0 or 1 at each coordinate.

We shall follow Coxeter’s advice here, and use ‘Dynkin’ as a marker of any construction that directly
describes the kaleidoscope in terms of its margin-angles, such as the ‘Dynkin Matrix’, whose values D;j
represent the angles between the mirrors (as the double-cosine of the supplement)

We do not have to go too deeply into group theory to understand what is going on. Instead, it
suffices to note that a node (or point), represents a self-reciprocal value (eg AA = 1), and a marked
branch represents a relation between non-commutative values, such as ABA = BAB. It is possible to
treat these values algebraically, such that ABAB = AABA = BA, or one can walk the Cayley diagram
for the symmetry.

The Cayley diagram is simply the omnitruncate, with the respective edges for v, e, h, c,... marked A,
B, C, D,... If two paths end at the same point, from the same start, the values are equal. So for example,
the example in the previous paragraph gives a hexagon, where ABA and BAB are just alternate names
for the opposite vertex.

There are some differences between the Lie-group and geometric implementations. First, the lie--
groups do not consider the pentagonal branch, eg ABABA = BABAB. For branches that in geometry
are marked ‘4’ and ‘6’, these are represented by two or three lines between the nodes. This causes du-
plication in the groups like 3,4, which become B or C' as the arrow on the four branch points one way of
the other.

8.1 Rooms

The usual reading of a subgroup is that the larger group contains the symmetry of the smaller group,
but over the same space. The Icosahedral group contains a pentagonal group, by dividing it at a vertex
into ten gores. The notion of rooms, is that the pentagonal group comes from removing particular edges
of the Cayley diagram, such that each residue cell contains a pentagonal group. If the removed classes
of edges represent walls, then we are left with a tiling of rooms.

Since all of the rooms are identical, the idea is to trap the full interior of various surtopes one per
room. Then the ratio of the room-size to the full size gives a count of the surtope in question. It is
acceptable that the surface or boundary of the surtope can be on the wall, but no part of the interior.

There are three kinds of mirrors or nodes acting here. Surround mirrors are those that reflect the
surtope onto itself, in a different position. That is S mirrors are perpendicular to the surtope, Around
mirrors reflect the surtope onto itself, because the surtope lies completely inside the mirror. Wall mirrors
are those that reflect the surtope onto a different copy of it, that is, into a different room.

For example, in the icosahedron, the room that captures an edge is formed by the four cells at a
right-angle. This is the face of the rhombo-tricontahedron. The edge of the icosahedron is the long
diagonal of this rhombus. The S mirror is the short diagonal, serves to reflect the edge end to end. The
A mirror is the long edge, that wholly contains the edge. The W mirror is the edge of the rhombus, a
mirror that reflects the edge onto an entirely different edge. Because the size of the room is 4, and the
order of the group is 120, there are 120/4 = 30 edges.

10



8.2 Vertex-nodes

A vertex node is a separate node, which is notionally connected to each of the nodes that Coxeter repres-
ents with a circle. Where the node represents a mirror, the connection from the vertex-node to the mirror
represents a half-edge in the Wythoff-mirror-edge construction, or a wall in the Wythoff-mirror-margin
construction.

The individual branches from the vertex-node can be marked with different symbols. In the original
form, these were marked with a number, the actual edge represented as the short-chord? For this reason,
the shortchords of the polygons are given special lower-case letters, where the upper-case letter represents
the branch name. So 4, 5, 6 become Q, F, and H respectively. 5/2 becomes V.

When vertex-nodes are considered, the mirror-margin of the shape is formed by the reflection of a
simplex fitted into the peak of the kaleidoscope. Mirror margins form wherever the non-mirror face is
not at right-angles to the mirror, and thus continue across the mirror.

8.3 Connectivity

Connectivity is about being able to use various mirrors in a Wythoff-group™] Where two nodes are
connected, the object reflected in one of the mirrors is continued onto the other. In the dynkin-sym-
bol, directly connected nodes have a marked branch between them, representing angles other than the
right-angle. For a polytope not to be a zero-height prism, or point, there must be a chain of connections
between every node and some node marked with a construction. This is more elegantly described as
being connected to the vertex-node.

When vertex-nodes are used, the surtope is non-zero, if it forms a connected structure, counting the
edges as connections. A surtope of S dimensions is then S+1 connected nodes, these form the S mirrors.
Nodes connected to an S mirror, but not counted in the surtope, are W mirrors. These are at an angle to
the surtope, and serve to reflect it to a copy. The remainder of the nodes are A mirrors, which are those
at right-angles to the S mirrors, and reflect the surtope unchanged.

8.4 Bridging and the Drop of Paint

The drop of paint is a marker, that if a drop is put on mirror A, then by various reflections, it will appear
on other mirrors. The drop can ‘walk’ only across odd angles, that is, the half-circle divided an odd
number of times. Removing the marked mirrors leaves a symmetry, as does removing unmarked mirrors.
A group might use two or three colours of paint to get all of the mirrors ‘dotted’.

A scale, placed in the kaleidoscope cell, which marks off the images of a point, will by reflection in a
mirror of the same coloured dot, do much the same thing. In effect, this is the proof used to show finite
euclidean lattices ar made of branches of 2, 3 and 6. So in the case of the pentagon, the same scale is
presented at the ratios of 1 and ¢ = %Jr %\/5, the span of these numbers form the pentagonal numbers, ie
21 + 2z2¢. Polygonal numbers are formed by the span of chords of a polygon, so Zn = z; + zocy + 23¢3....

An even branch can ‘hold nodes at different values’. An example is that of the square, where the two
nodes are of different colours, and the reflection of the scale from one mirror to the other, does not carry
back. So the two nodes stand at the ratio of 1 : v/2. Crossing the 4 bridge changes the base value by /2.

8.5 The Laws of Symmetry

The cell of a kaleidoscope might be further bisected by mirrors, when the mirrors on either side of the
bisector are equal. The test for equality of mirrors A and B, is that for every other mirror M, the angle
(or branch) AM is the same as that for BM. Where some third or fourth mirror C, D, ... are also equal,
then the equality must be measured between each pair, ie A = B, and A = C and B = C, It follows that
these are themselves mirrors, and so AB = BC = AC.

The effect then is to leave A as it is, replace B to be connected only to A by a branch twice in value
as AB, and any further equality C, D, connected in order by a 3 branch. The process is reversible. So for
example, the group 4,3 can be regarded as if the nodes become ABC, giving three points 2,2, or they

9The short-chord is a chord that forms the third side of a triangle, the other two being edges.
19A Wythoff group is one that has a simplex as a fundamental region. All possible sizes are available.
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can be held that the partition had happen so the first node is B, and the second node is A, and we have
BMA of the group 3,3. M is a mirror not part of the dissection.

The laws here is usually suffice to handle most cases. The equity of polytopes derived by different
rules suffice to fill the remainder in.

9 Worked Wythoff’s Constructions

The Coxeter-Dynkin symbol for the twelftychoron, is shown below in the icosahedral form. This means
that the unmarked branches are to the left, and the one marked branch is to the right. Putting the chain
of unmarked branches to the right would be the dodecahedral form.

The fourth node is ringed or marked. In the Coxeter-Stott notation, this is translated as t3{3, 3,5},
where the subscript on the t means that the node to the right, zero-counted, is marked, and the absence
of 0, 1 or 2 means that those nodes are unmarked. The {3,3,5} bit refers to a Schlifli symbol for that
polytope (600-choron).

My notation is to write in succession, the nodes and branches. An unringed node is written as o, a
ringed node as x, and an unmarked branched as 3. So the symbol below is 030305x.

5

° ° ° (®)

In terms of the kaleidoscope, the dots or nodes represent mirrors, and the lines or branches represent an
angle between the mirrors. The most common angle is the right-angle. These branches are usually not
drawn. The nodes shown as not connected, such as the first and third, are actually connected by a zq 2
branch.

The branches marked, but no number given, are the second-most common, are inferred to be marked
with a 3. Unlike the 2 branch, these are always shown. Any other value is explicitly marked and shown,
as the last example shows, a branch with the number 5 above it.

The nodes represent mirrors in the kaleidoscope. The branches represent angles between the mirrors.
Any given subset of mirrors will reflect whatever decoration it is presented with. It is in this way, that
we find the various elements of the figure.

Without the circle around d, the symbol represents the construction of the kaleidoscope. The group
representation of this is AA = BB = CC = DD = I, meaning the reflection of a reflection is the identity,
AC = CA; AD = DA; BD = DB, means that unconnected mirrors commute, ie the reflections can be done in
any order.

The branches are more complex: ABA = BAB and BCB = CBC are am alternation of three in thength,
representing that one can go around a circle in six moves. Likewise, the 5 branch cd represents
CDCDC = DCDCD. A four-branch connecting two mirrors named x and y, would be XYXY = YXYX, rep-
resenting the eight sides of an octagon produced by the angle of /4.

Any subset of mirrors describe a polytope too. The method of finding these is to cover sets of mirrors,
and see what is left in there. The number of nodes or mirrors denotes the dimension of the polytope in
question. This figure has four nodes, and so is four-dimensional.

The ringed nodes represent the mirrors that the mirror is not on. So it’s off mirror d and on the
remaining three. Where there is no ringed nodes, the vertex is on all mirrors, which is the point at the
intersection. So it’s some distance, say '1’ from mirror d, and zero from the remaining mirrors.

12



Removing a node, also removes the angles that mirror makes with others. It still is a valid kaleido-
scope. Suppose we remove node b. We get something like this.

We see that node a still commutes with nodes ¢ and d, so the vertex is on mirror a. Nodes and d are
at /5, the vertex moves every second reflection, giving a pentagon. But at node a, the vertex is on the
mirror, and does not move under ¢ or d. It’s a zero-height pentagonal prism.

For a solid element to form, there must be a path of branches to every residual node from at least
one marked node. So let’s mark a second node, say b, and see what happens.

The trick here is to place a finger over each node or set of nodes, to reduce the remaining nodes to
the required dimension. If there is no path to a ringed node, a zero-size element occurs. If the tree of
branches falls apart, a prism-product forms, as long as there are ringed nodes in each part.

a Removing node a leaves x305%, or rhombi-icosadodecahedron. This has three types of hedra, bc forms
a triangle, cd forms a pentagon, and bd forms a rectangle of the two named edges.

b Removing this node disconnects node a from a ringed node. Nothing (literally, a zero-height pentagonal
prism) forms here.

¢ Removing this node leaves a disjoint tree, but each node is still connected to a ringed node. ab forms
a triangle, and d a non-zero edge. We get a triangle prism here.

d Removing this nodes leaves abc forming a polytope bounded by two different types of triangle, that
is, an octahedron.

Removing two nodes shows the margin between the faces. As before, they are polytopes of two nodes,
or polygons.

ab These two nodes leave cd to form a pentagon. But because the face at node b is a zero-height
pentagon-prism, the face at a directly connects onto another of the same kind.

ac A rectangle or square forms here. It forms between the pentagonal prisms and the squares of the
X305X.

bc Removing these mirrors leaves a rectangle in ad, which is o:1 in size, ie a line.

bd Removing these mirrors leaves a rectangle in ac of 0:0 size. A point so to speak.

We shall introduce a more powerful method that allows a much wider range of figures, as well as
calculating incidences and verges (surtope-figures, the general form of vertex-figures.

13



9.1  Wythoff Snubs

The largest class of uniforms, not constructed by mirror-edge, is the wythoff-snubs. These exist for all
groups, but are generally not uniform, except for a limited range of cases. The usual symbol is to replace
marked nodes with an s node, as s3s4s ‘snub cube’. The corresponding effect is to replace the node
with a hollow circle, so as to indicate that the symmetry is still present, but the mirrors are not.

A wythoff snub is made by alternating diminishing. That is, one removes every second or alternate
vertex. For this reason, convex snubs are derived from polytopes with even-edged polygons only. An
odd polygon will produce a double-cover such as in a pentagram as s5o. Additional faces form at the
removed vertices, each representing a complete vertex-figure.

The main reason that not all snubs are uniform, is that the vertex-figure can have more kinds of edges
than there are different kinds of vertices. This equates to solving something like six equations in four
variables, or three equations in three variables. The 3d cases all exist, because the equations can always
be solved. So we have snubs for the tetrahedron, cube, and dodecahedron, as s3s3s, s3s4s and s3sbs.
The antiprisms are snubs of the respective prisms, so x2x5x gives s2sbs.

The laws of symmetry can be used to reduce the complexity of the figures, but this is done on a
node-by-node basis.

While in the simplex, we might imagine node a and d are equal, they are not. One needs to consider
if the branch ab is equal to db. One is a ‘3’ branch, the other is a ‘2” branch. So while we might equate a
solution which sets a=d and b=d, we still end up with the following edge-kinds: ab=cd, ac=bd, ad and
be. We are trying to solve four equations in two unknowns.

It’s a pity really. The figure is topologically covered in 10 icosahedra (at a and d), 20 octahedra (at
b and ¢, and 6o tetrahedra (alternating with 6o vertices).

Likewise, we see that o4s3s4o does not work. This equates to one kind of vertex, and two kinds of
edges (the group unfolds to a square s3s3s3s3z). The are ‘3’ edges and ‘2’ edges. It corresponds to a
tiling of icosahedra in a body-centred array, with attached tetrahedra to fill in the gaps. These tetrahedra
are not regular but disphenoid, ie they have four edges equal and an opposite pair not-equal.

The figure given by s3s403040 is equal-edged, but the vertex-figure is a half-16choron (as ‘octahedral
pyramid’, given as x.03040 ‘point’ atop .x304o ‘octahedron’). It is comprised of cells s403040 ‘oct-tet
horochoron’ or ‘semicubic’ and s3s4030 ‘snub 24choron’.

10 Vertex-Nodes
Instead of circling nodes in the style of Coxeter, an alternative is to connect all marked nodes to a new

node. Such is a more exact representation of the figure, since the new node is the vertex, and the new
branches become the half-edges reflected in the mirror. So

14



It is not really suited for print, because the vertex-node can have several connections which become
hard to draw. None the less, the surtopes are all ‘connected’. The triangle-prism formed with nodes abd
now become a connected figure 1abd. Removing node b leaves node a disconnected.

The different branches to the vertex-node can be given different lengths. When these equate to the
shortchord™] of a polygon, it can be suitably marked, such as marking the branch 1b with a number ‘5’.
In an early notation, the 3 branches were counted, and higher numbers allocated letters. A five-branch
is F, as cd would be, and say, 1,b, the vertex-node and branch would descend onto ‘b’ as an ‘f” marking.

The number of dimensions of the surtope now is the same as the number of vertices the simplex of
that dimension has. One can find this readily by using a zero count, so labd has four nodes, counting
0,1,2,3 gives three dimensions.

The count of surtopes is from the product of the S and A mirrors, each of which reflect the surtope
onto itself. The W mirrors reflect the surtope onto a different copy. The S and A mirrors are at right
angles, and are thus never connected by a marked branch. The vertex-node is an S node.

An S node can only be connected to another S node or a W node. Likewise an A node can only be
connected to another A node or a W node. There is no restriction on W nodes. The S nodes are mirrors
that reflect the surtope onto a different orientation, but not a different position. An A is an around
mirror, leaves the surtope completely unchanged, because the entire surtope is in the mirror. A W node
moves the surtope onto a different copy of itself, it is a wall of the room that contains the surtope.

The evaluation of surtopes can be done in a table, as follows.

] W A g(S) g(A) G/sa result
bd a,c 1 4 3600 vertex
1d be a 2 2 36oo edge (f)
1b acd - 2 1 7200 edge (1)
1ab cd - 6 1 2400 triangle
1bc ad - 6 1 2400 triangle
1bd ac - 4 1 3600 square (rectangle)
1dc b a 10 2 7200 pentagon
1abc d - 24 1 600 octahedron qua tetratetrahedron
1abd c - 12 1 1200 triangle-prism
1bed a - 120 1 120 rhomboicosadodecahedron
1abed - - 14400 1 1 cantelated 120-choron.

10.1 Lace-prisms

A lace prism is formed by multiple vertex-nodes on the same figure. The usual rule applies: the dimension
of the surtope is the zero-based count of S nodes. Except now there are several vertex-nodes. Consider
the vertex-figure of the figure under discussion.

o —eo )
a 1 C 2
S W A g(S) g(A) G/sa result
2ac - 1 1 4 point (top layer)
2 1c a 1 2 2 point, (bottom)
1a 2¢c - 2 1 2 edge (x)
1c 2a - 2 1 2 edge (x)
2¢ 1 a 2 2 1 edge (f)
12 ac - 1 1 4 edge q (lacing)
1ac 2 - 4 1 1 square

*1The shortchord is the base of a triangle, formed by two edges of a polygon. It equates to a vertex-figure of the polygon.
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1a2 c - - 2 2 triangle (2) atop 1a. = qqx
1c2 a - - 4 1 rectangle x:f

12ac - - 4 1 1 disphenoid prism, as xx atop fo

Whereas the single-vertex figures are set into n mirrors, the figure here is set into two mirrors a and
c. This forms a valley, and the top and bottom layers are independently formed by the nodes lac and
2ac. These two figures are laced together by edge 12, which is not usually a mirror-edge.

The edge 12 is the vertex-figure of a branch that connects them, so if it were ‘n’, the edge would be
the vertex-figure of xNx, or a 2n-gon. Here we have 12 = 2, and x2x is a square.

The term lacing comes from the edges formed by a polygonal antiprism, which is xPo above oPx. The
top and bottom resemble the faces of a marching-band drum, which are held fast by lacing that zigzags
between the top and bottom. Lacing is here applied to edges not reflected in a wythoff-construction, and
structures so formed.

Note that against a given symmetry, such as the one bounded by a mirrors, we see two parallel lines
1c and 2c, of ratios 1:f forming opposite faces of a trapezium, the sloping edges here are q. This is
a progression from top to bottom causing the line to expand or contract. All lacing elements cause a
surtope of the layers to evolve into a different (or same) shape.

11 Polygon Maths

The main part of this deals with the span of chords of the polygon, but it helps to explore sone other
areas first.

11.1 Bases

In common use, a base is a counting system over columns of equal weight. With a little extension, it
suffices to use a cycle of columns, but these can be implemented as rows. The number representing this
year (2021), written in a base twelfty would be 16.101. However in twelfty, we do not use 120 runes, one
for each column value, but rather two rows, the high row is ten times the low row. Only twelve values
are used, the extra two are in the high row, representing 10 and 11 decades. The symbols for these are
V and E, and called teen and elef, so that teenty and elefty do not clash with twenty and seventy.

While above and below might suggest (13\1’7 the numbers are written in line, as 16.v1, using a grades
of separator below the radix.

For small bases, such as decimal, it is possible to memorise the full tables of addition and multiplic-
ation. In the larger bases, one must resort to other tricks. For example, twelfty calculation is done in
decimal at digit level, but the commits and reads from the high digit is done as dozens and units, so
5.60 the 5.6 is read as five dozen and six, and directly converted to 66. Multiplication and division in
the high place is done by providing a tenth multiplier or divisor. The multiplication by 73 is then done
as 7 T and as 3 U, where T is ten times U.

The reciprocal of any integer in an integral base either comes to an end, or is eventually periodic.
For example, 1/7 in twelfty recurs with a one-place period, 0:17.17.17, but we use a high and low digit
in each place.

One of the mathematical expressions of a base is to consider the numbers b™ — a™, for various pairs of
a and b. These are fractional bases, and do not lend themselves to digital calculations. None the same,
the factors of the resulting numbers do not depend on a = 1, and where a is omitted, it can be restored
because the sum of powers must be identical through each algebraic factor.
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