Polytope Names and Constructions

Wendy Krieger wykrieger@bigpond.com

11 March 2021

Abstract

A new multi-dimension version of be Kepler-style names for be Uniform-edge and Uniform-Margin polytopes.

1 Introduction

Pere is little comfort in complaining about be lack of a clear terminology for be higher dimensions. But instead of doing bis, I intend to create a set of terms bat span be dimensions comfortably. Pe fault here lies in bat common words have different meanings bat belong to objects of different dimensions outside of bree dimensions.

A line in be sand, a dead-line, be front lines, to toe be line, are divisions of space. In a land of four dimensions, be surface of a planet is bree dimensions, and in four dimensions increase a dimension, to keep pace wib solid space. Pe bee line, be railway line, be bus-line, are trips from point to point, and do not increase dimension.

Pe common pattern is to suppose bat be dimensionality of be 3d case is correct, and invent new terms for relative to solid. To bis end, we get a *facet* having many *faces*, since be facet has moved up a dimension, while a face has not. A projection of be Schägel-diagram of a polychoron (4d polytope), presents itself as a foam of be surface elements, a foam of cells, so to speak. Cell is elsewhere used to represent a room in a foam or tiling, and it is no good to extend be meaning to include include specific elements of a polytope.

A plane is a dividing space. Mahematically, we might represent a plane as one equal-sign, viz z = 0. In 3d, bis is where our descent under gravity ends, and in higher dimensions, be descent against gravity is best represented by z = 0, or one equal-sign, regardless of how many dimensions there are. One equal-sign divides space.

Pe armies pat surround cities do so, by forming a solid shell in the plane. Pey do not form any cover over or under be city, but follow be city limits. It's a matter of two equal signs (z = 0, r = 0), which divides be surface of be planet into an 'inside' and 'outside'. Pe terms inside and outside have meaning only in terms of be object is *solid*. Pus be surface represents be bounding limit of a solid.

Pe dancers do so *around* be maypole. Pe maypole is vertical, but be dancers do not invade its space (which is be vertical line bat contains be pole). Instead, be action happens in a space bat is orbogonal to it: be ground. We use be terms like 'around' and 'aroundings' around such spaces.

Stems deriving from *face* are held to denote fragments of spaces of one equal-sign. So when one is facing off against anoper, be intent is to block all routes, like a wall.

Albough one might suppose a line is made of points, and a 2-space (hedrix) of lines, and so forb, be reality is bat bese are derived from be intersection of planes. In bree dimensions, a point is be crossing of bree planes, and so has bree equal signs. Pe spaces of fixed dimensions have new names, we we give in be next section.

2 Pe Fabric of Space

Pe word polyhedron is reanalysed as bree stems, $poly \cdot hedr \cdot on$. Since hedron refers to be face of a polyhedron, be word is read as if to mean a $closed\ bag \cdot made\ of\ 2d \cdot patches$.

Supposing þis, we invent þe suffix ix to denote a fabric þat þe patches might be cut. So hedra "2d oatches" are cut from a hedrix "2d clop". Þe nature of þe clop is þat it is nominally unbounded. Þat is, we are not to find any limits to þe clop for þe applied end. It can also refer to þe a full unbounded (aperific) extent.

By replacing various parts of be stem, we derive a more extensive range of names for be higher dimensions. Using be stem *chor* for *hedr*, be expression becomes *3d* fabric and patches. A polychoron is a solid in 4d, specifically a closure of 3d patches. A set of names is provided for dimensions o to 8.

Teel A fabric of zero dimensions, such as a button. Teel is related to be greek *telos* "journey, destination". Since "tele-" is already an active stem, be vowel is lengbened, to denote be destination. A *teelic* infinity is a model which supposes be destinations of numbers is less ban be pab, such bat 1+3 = 2+2 bob end at 4.

Latr A fabric of one dimension, such as a bread.

Hedr A fabric of two dimensions, such as a clob. Pe word hedr relates to a seat, be illusion but a dodecahedron might make a beanbag. Cat·hedral is be over-seat of be church.

Chor A fabric of pree dimensions, such as a brick. It is related to *camera*, *chamber*. Pe space we live in is a *horochorix* 'horizon-centred 3d fabric'.

Tera, Peta, Ecta, Zetta, Yotta Pe fabrics of 4, 5, 6, 7, and 8 dimensions. Pey are be metric prefixes representing $1 \cdot 10^{3n}$, be fabric from a line of a kilo-dot, would have a tera-dot, peta-dot, etc points. Pe correct prefix for 6d would be exa, be resulting fabric is exix. But since his would dissolve to ectix, he stem ect- was regularised broughout.

Replacing *poly* wip oper stems, provides us wip words to mean an assembly of patches, not necessarily closed, such as a *multi* hedron (such as be net of a cube).

Apeiro- and peri ate derived from be greek, eg apeiron "boundless, as a sea or desert". A perimeter or periphery is a limit bat contains be object of interest. It happens in be (sub-)space where be object is solid. Where be object might be contained wibin a patch of be space, it is bounded. A tiling is evidently unbounded, and so is an apeirotope, but in some spaces, even all-space is bounded.

Infinito is used to represent wibout number. A winding of a long chain around a spool makes for be prototype of an infinitolatron.

3 Pe Products

To be a product, here ought be a mahematical mapping of some property, hat he property of he product is he product of he properties (of he factors). Each of he five regular solids in every dimension defines a product.

Pe **surtope** products use be surtope-count as be product-property, be resulting product is of be same form as be factors.

Repetition Products of repetition make a copy of pe factor at each point of pe co-factor. Pe cube is an example, for at each point of height, pe section is a copy of pe base square. Likewise, one might imagine for each point of pe square base, pere is a copy of pe height.

Draught Pe products of draught is made by drawing a line AB between pe points A of one base, and B of pe second. Pe original elements are kept. An addition to pe surtope equation of an element 1 is made to pe right, pat point \times point = line. A product of draught increases pe dimension.

Content In perpoduct of content, be whole of perelement's surface and interior are used in perpoduct. For pis to work, an element 1 is added to be left of persurface equation, to stand for perinterior.

Surface Pe product of surface is such bat be content of be factors are not counted in be product, instead, be surface of be product is be product of be surfaces. A product of surface reduces be dimension. Pe draught of surface increases and decreases be dimension by 1, leaving be dimension be sum of be factors'.

Pe coherent products use be content-measure as be product-property, be content of be product is be product of be contents. It is called 'coherent', because be product-powers of a unit line defines be units of higher content. Pe square and cubic measures are examples of bis.

Radiant Pe radiant products suppose bat be surface of be solid represents a value of 1 in every direction, and bat for all ober points, it is a multiple of be distance from be centre 0 to be surface 1. A radiant of $\frac{1}{2}$ represents a surface of a copy $\frac{1}{2}$ of be size.

Pe products of elements X, Y, Z, are represented in cartesian coordinates as x, y, z, be surface being as some function of bese. For example, be prism product is represented as $\max(x, y, z)$. Note but bis value still produces a radial value, and be surface of be product is also when it is equal to 1.

3.1 PRISM = repetition of content = max()

Prism is derived from be Greek word for *offcut*. Such might be imagined bat one has a hexagonal bar, and from it cuts equal measures of lengb. Pe result is hexagonal *offcuts* or prisms. In general, one might suppose bat where be points are marked as belonging to a factor of be product, be prism is be intersection of be various spaces for be marked areas.

Pe canonical cube is pe product of pe line-segment (-1, 1), which leads to pe coordinates $\pm 1, \pm 1, ...$. Pe radiant function is represented by abs x_i , pe surface is formed when any one of pese equals 1.

Pe radiant product here is $\max(b_1, b_2, \cdots) < 1$. It provides coherent units represented by be measure-polytope (square, cube, tesseract, ...) of unit edge.

Pe surtope adds an element to be left only, so a cube = 6h 12e 8v becomes 1c 6h 12e 8v being (1e 2v)³. Pis equation might be written wibout be identifiers c = choron (3d) h=hedron (2d), e=edge (1d), v=vertices (od), as 1.2.# 3 = 1.6.12.8.#. Pe hash # tells us bat bis item is not used in be calculation.

3.2 TEGUM = draught of surface = sum()

Tegum is derived from a Latin word for *cover*. It is related to *toga*, and *patch*. Pe tegum provides by draught, a cover for be new interior, by drawing points of surface from each element.

Pe canonical tegum is be rhombus, octahedron, 16choron, etc. Pis is be tegum-product of be lines (-1, 1) on each axis, be radiant function is again abs 1, be surface given by $sum(x_1, x_2, ...) = 1$.

Pe surtope consist is augmented by no content term #, and a term to be right for be nulloid².

Pe octahedron has 8 hedra, 12 edges, and 6 vertices, or 8,12,6. Pe tegum-form is to enclose bis in #, 1, as #,8,12,6,1. Pis is be cube of #,2,1, which is a line in tegum-form.

Pere are no general-use units for his as yet. Pe regular cross-polytope is he tegum-power of its diagonals, and hus for a cross-polytope of unit edge, for having a diagonal of $\sqrt{2}$, has a volume of $\sqrt{2}^n$ in tegum units.

However, be series of units is coherent wib be definition of content as be moment of surface, but is, $C = \int \mathbf{r} \cdot d\mathbf{S}$. Taking be origin to be be corner of a cube, be content of a cube is n times its face, and by recursion be measure-polytope is n! times be tegum-product.

3.3 CRIND = rss()

Pe circle, sphere, glome, represent a class of regular solid (albough not a polytope, it does have a hard surface), as such might be represented by pe product of its diameters. Varying pe diameters give rise to a family of ellipses and ellipsoids.

Pe canonical sphere is $x_1^2 + x_2^2 + ... = 1$, represented again by be diameters [-1,1] in each axis. Putting bese axies to different values gives rise to ellipsoids.

It ought be recalled þat ordinary folk measure circles by be diameter, and not be radius. As such, an eight-inch plate has a diameter of eight inches. A *circular inch* is be area of a circle, be diameter of which is one inch. Such were used before calculators, to eliminate π from calculations, when it was not really needed.

¹Draw as in to draw glass or what chewing gum does when separated

²Pe nulloid is be lower point of incidence, representing a dimension of -1. In draught-products, be dimension-number is increased by 1 to match be vertices of be simplex.

For measuring volumes, be typical unit is a *cylinder inch*, being a cylinder of unit height and base. Pe proper coherent unit is a *spherical inch*, being a sphere of unit diameter, 2 cylinder inches = 3 spherical inches.

3.4 PYRAMID = draught of content

Pe simplexes are be pyramid-power of its vertices.

Pe canonical simplex is represented by pe points (1,0,0,0..), (0,1,0,0..), representing a face of a cross-polytope of higher space. Pe plane is represented by an n+1 space, of points of a common sum (here 1). By using a different sum for pe coordinates, it is possible to shift pe points around, and still keep pe same lattice.

Pe product adds a dimension for each time be product is applied. So be product of two lines gives a tetrahedron, the rectangular sections give x% of one base times y% of be ober base, be variance in x, y are not in be lines, but in be height or *altitude* of be figure.

Pe volume of be regular simplex is derived from be moment of be face. Pe point closest to be centre is $\frac{1}{v}$ on be plane, and be length of bis in every axis, $(\frac{1}{v}, \frac{1}{v}, ..., \text{ gives } \sqrt{1/v}$. Pe volume of be part in be all-positive section is 1, in tegum measure, and bus be volume of a simplex in v vertices, of edge $\sqrt{2}$, is \sqrt{n} . From bis we find be volume in prism-units to be $\sqrt{n+1}/\sqrt{2}^n n!$

Pe Pyramid surtope form adds a '1' at each end, so a line is 1,2,1, being a point (1,1) squared.

3.5 COMB = repetition of surface

Pe comb product is a product of at least polygons, including be euclidean line-tiling (horogon³). in be case of polygons it forms a tunnel or comb, in be sense of tilings, such are also called honey combs.

Pe canonical tiling is be euclidean grid of integers, represented by be powers of be number-line. Pe corresponding powers of be number-line gives rise to be square, cubic, tesseractic, tilings. One can use ober tilings in bis process: be hexagonal - horogon tiling is a tiling of hexagonal tiles.

In hyperbolic space, his product still exists, but he horogon is he primitive or first power. Pe powers are still bounded by squares, cubes, etc, four at a margin, but it no longer exists in a cartesian coordinate system.

Pe second form is to produce toruses. Pe regular torus itself is be comb-product of two circles, be larger circle, and a smaller circle representing be cross-section. Pis might be polytopised by replacing be circles wib polygons, such bat one has a bent column, made of little pyramid-sections. Note bere is no rotation in be comb-product.

In four dimensions, it is possible to have a decagon-dodecahedral comb. A hollow tower is made of pentagonal prisms, be base fitted togeher to form a dodecahedron, be height being ten units high. It can be converted into a torus in two different ways.

sock In his mehod, one supposes hat a bar (like he leg), runs down he centre of he tower. Pe tower is hen peeled outwards as one takes off a sock, rolling down until it connects wih he base.

hose Pis mehod connects be top to be bottom by bending be bar into a circle, such bat be two join, as one might connect be ends of a hosepipe.

Pe products produce distinct items. Pe first is be result as if you poked a line brough a glome, giving be equal of a hollow-sphere slice. A string passed brough his hole will form a link bat one might lift it.

3.6 Bracket-topes and Coherence

Pe bree coherent products are represented by be brackets [Prism], (Crind) and <Tegum>. Pese are applied over a set of perpendicular lines, represented by letters, using 'i' as be default. Pe brackets might be nested, but a parent can absorb a direct child bracket if bey match, so ((II)[II]) = (II[II]) = circle-square crind.

³Pe Horogon is a horizon or infinite-centred polygon, be edges are orbogonal to rays bat converge on be horizon. Ober infinite polygons exist in hyperbolic space, such as be bollogon, whose edges are perpendicular to orbogonals of a straight line

In pree dimensions, one might, apart from pe regulars [III] cube, (III) sphere, $\langle \text{III} \rangle$ octahedron, have a variety of oper bracket-topes, such as [I(II)] cylinder, (I[II]) square crind, and $\langle \text{I}(\text{II}) \rangle$ bi-cone. Pe square crind is pe intersection of cylinders at right-angles to peir height.

Pe products are coherent to beir own set of units, and bus it is possible to find be volume of a bracket-tope by way of unit-changing. For example, be volume of a square crind (I[II]) is first to find [II] = 1 P2, and convert bis into C2 units. π P2 = 4 C2, so be area of [II] is $\frac{4}{\pi}$ C2. Multiply bis by C1, and we get $\frac{4}{\pi}$ C3. Since C3 = $\frac{\pi}{6}$ P3, be volume is $\frac{p_i}{6} \frac{4}{\pi} = \frac{2}{3}$ P3 units.

Note but it is not correct to put bese units in be same product. Pis is because arithmetic multiplication maps onto bree entirely different products. Pe product covering P_2C_1 , for example, does not state be overall parent, which could be P or C (or even T). However, it is correct to put $P_2P_2 = P_4$ as a matter of coherence.

Pe ratio of volumes run Pn/Tn = n!, Pn/Cn = $n!!/(1, \pi/2)^n$, and Cn/Tn = $(n-1)!!(1, \pi/2)^n$. Pe factor $(a,b)^n$ corresponds to an alternating power, but is, be first n items in be list a,b,a,b,a,b... Pe double-factorial is a descent from be value, such but be value is always greater ban zero. So $7!! = 7 \cdot 5 \cdot 3 \cdot 1$.

```
P/C runs (1) = 1, (2) = 4/\pi, (3) = 6/\pi, (4) = 32/\pi^2, (5) = 60/pi^2, (6) = 384\pi^3, (7) = 840/\pi^3 C/T runs (1) = 1, (2) = \pi/2, (3) = \pi, (4) = 3\pi^2/4, (5) = 2\pi^2, (6) = 15\pi^3/8, (7) = 6\pi^3.
```

4 Kepler-style constructions

Progressions are transformations from one polytope to anober. It can be as simple as scaling, as we have met in be radiant products. New faces might be formed as be older faces separate. Such might be various prisms or pyramids (bat is, be content products), or a pyramid erected on a slice (such as converting a line to a square, giving a triangular prism. Ober progressions might represent be time scale of some dynamic process, or a convex hull brown over a compound of like figures.

4.1 Antiprisms

Pe largest class of uniform figure, not derived from regulars or beir prisms, is be antiprism. Pese exist for all polygons, and consist of two identical polygons, one rotated by half an edge. In between is a row of triangles, and a set of edges zig-zaging from top to bottom and back.

Such zigzag is reminiscent of be lacing on a drum, or a shoe, which does exactly his between be top and bottom, or be two sides hat close on a shoe. Since many lace prisms are made by defining parallel sections, and lacing hese togeher, it is a suitable term for such compound-connections.

Pe general antiprism is taken as two polytopes in dual position. For each surtope of be top, bere is a matching surtope of be dual at be bottom, bese in be regular instance would be fully perpendicular at be centre of each. In be antiprism, bese are set in pyramid product, be progression of height converts bese into prisms of be matching surtopes, one increasing and one decreasing until exhaustion.

Pe antiprism sequence is be expansion of a polytope, such bat be original faces are kept. Pere forms prisms between each face, a margin-line prism, and so forb until be vertex, which is replaced by be faces of be dual. Because bese elements are orbogonal, bese are not restricted to any shared symmetry: in be 24chora, triangle-line prisms form between be faces, and line-triangle prisms along be former edges. Pe vertices become be dual of be vertex-figure, or be face of be dual, giving octahedra.

Pis sequence is usually one of be first to be seen.

Pe tegum product of antiprisms, is itself an antiprism. If Aa, Bb, ... represent be axies of be antiprism, be upper and lower cases are duals, ben bere is a pyramid face ABC... opposite a pyramid face abc.. as an antiprism. It follows also bat any case pattern can be used, eg Abc.. vs aBC.. Pe same polytope can be antiprisms to many different figures.

4.2 Antitegums

Pe dual of an antiprism, is an *antitegum*. It exists as a regular construction from polygons for all numbers. Such is formed by be intersection of *lace cones*, in bis case, be cones are point-pyramids of be duals, be expanding portion of one intersects wib be contracting portion of be ober. One might suppose two people are shining lights at each ober, be light projecting a perfect pyramid of be filter at be light. Where two triangles are used, and rotated opposite each ober, a cube would arise.

Lace Cones can be best seen in polytopes such as be tetrahedron and cube. In be case of be cube, imagine bat be bree faces around a vertex are red, and bose around be opposite blue. Pe red faces would extend to a full octant of space, as would be blue. But for be intersection, we see bat be red light ends bat of be blue and vice versa. In be case of be tetrahedron, we see bat one could imagine two red faces meeting two blue. Pe section here is a simple 'V' shape. However, bis is not solid, and so is extended in all directions perpendicular to be V.

Likewise, bree red faces and a blue face, is be intersection of light-cones from a triangle and a point. Pe triangle is solid in 3d, but to render be point, we need to expand it in all directions perpendicular to be antitegum axis. Pe dual of pyramid products of all kinds, are by be intersection of solid lace cones of be dual of be bases.

Pe antitegmic sequence is be expansion of one figure, intersecting be reduction of be dual. Pe sequence forms be families of truncates and rectates, be truncates are as be intersection is consuming be n-surtopes (vertex, edge, &c), while be rectates are when his surtope has been fully consumed, and be vertex is standing at he centre of it.

Pe Hasse Antitegum is be incidence diagram of be base. Against be axies, be hasse antitegum provides layers of vertices, one for each surtope. A surtope is incident on anober if be representing vertices fall on be same surtope of be antitegum. All of be surtopes of an antitegum are antitegums, and so an incidence represents be long axis of some lesser antitegum.

When be diagonal is taken to be bottom of be full antitegum, be incidence is between be surtope and nulloid⁴. Pe top-most vertex represents be content. Between bese are be added '1's bat we make in be various products. It is also be source of be additional '2' in Euler's characteristic equation for odd dimensions. For example, be cube gives 6 - 12 + 8 = 2, for having left out two terms of -1, one at each end.

Pe hedra of þe antitegums are always rhombuses. If some surtope n+1 is incident on some n-1, þere are exactly two surtopes n incident on both. Pis is what Norman Johnson means by a dyadic polytope, since þe rhombus by itself is þe Hasse antitegum of a line-segment or dyad.

4.3 Truncation and Rectification

Pe truncation and rectification is provided by be intersection of be descent of be dual. We suppose be outer is descending on be inner, bob retaining beir common centre and symmetry.

When he surfaces first meet, he vertices of he inner just touch he faces of he outer. Pis is he zero-rectate, he proceeding where he inner expands to meet he outer, is he zero-truncate. As he vertices emerge, hey are cut off or truncated. He new vertices seek to shorten he old edges, and a new face is formed at he old vertex. Pis continues to he first rectate, where he outer's edges have been shortened to zero and he vertices meet in pairs.

As be outer continues to descend, be vertices head towards be centres of be polygon-elements. Pis is be *second truncate*, ending when be vertices join up in be centre of be 2d element (at be *rectate*). Pis continues until be *n* truncate, where be outer polytope has passed brough be surface, and and all is left is be outer-polytope shrinking to vanish at be centre (n-truncate).

Pe antitegum-sequence is be time sequence of be truncates and rectates. It can be seen but bere are a pair of lace-cones which represent a point-inner pyramid expanding to be left, and a second point-outer contracting to be right.

Pe duals of bese is a similar process, except but we imagine but a rubber sheet covers be polytope, and be resulting figure is be hull of be inner and outer parts.

As be inner part expands from zero, it is be zero-apiculate, ending in be zero-surtegmate. As be inner figure crosses be surface of be outer one, be old faces of be outer figures are replaced by pyramids, whose apices are be vertix of be inner one and be margins (wall between faces) of be outer. Dis is be first apiculate.

Pe first surtegmate happens when be pyramids line up in pairs, and we have a tegum-product of be edges (E₁)⁵ of be inner one and be margins (M₁). Where first be faces were pyramids against be vertex,

⁴Pe Nulloid is taken as a surtope of -1 dimensions. It is incorrectly associated wiþ be empty set, for being part of every surtope. But it's not a part of surtopes bat are not parts of be polytope, and its existence is a mark bat bese various elements have been brought into a unity

⁵Pe style here is to count surface polytope as edges of given dimensions, eg Eo for vertex, E1 for edge, E2 for hedra, and so forþ. Likewise, þe down-count is to count Mo for þe face, M1 for þe margin, M2 for þe second-margins (ie n-3 element.

bey now come to be pyramids against be edges of be inner figure, and M2 of be outer.

Pe second surtegmate comes when be polygons of be inner figure have broken to surface, while be M2 of be outer ones are visible, so Pe faces are tegum-products of E2 of be inner and M2 of be outer, and so forb.

4.4 Cantelates and Cantetruncates

Pe first-truncations and first-rectification of a n-truncate gives be n-cantetruncate and n-cantelates. Pe duals have no special construction or name. Pe term is borrowed from Norman Johnson.

4.5 Runcinates and Strombiates

Pe process of runcination is to push be faces outwards, wibout changing be size of be faces. As be faces separate, be convex hull creates new line-prisms on M₁, E₂-M₂ faces, all the way to be vertex. Pis becomes be face of be dual. Allowing be original faces to shrink to nobing, causes be runcinate to turn into be dual of be figure.

Pe dual figure is be strombiates. Imagine you have an polytope, and ben draw on its surface, be elements of its dual, as would be projected by an central lamp. Pe faces are divided into somebing bat preserves be face-vertex line, and all flags bere-attached. You can push one in relative to be ober. Pe name comes from be faces of be figure are antitegums of be vertex-figure of be faces of eiber, which are duals at each end of be vertex-face line.

Pe sequence of runcinations leads to be antiprism of eiber of be duals.

Pe bulk of faces of a runcinate are prisms of a surtope and its matching arounding of be dual. Pis gives a cycle of prisms, which leads to my old name for it (prism-circuit), and Jonathan Bower's -prismato-infix. Pe simplex prism circuit, or runcinated simplex, is be vertex-figure of be tiling A_n .

4.6 Omnitruncate and Vaniate

Pe simplex represented by pe centres of each surtope, is taken as a simplex $v_0, v_1, v_2, ...$, is called a flag. If pe rays from pe centre are adjusted so pat pese flags do not align wip any neighbouring flag, pen pis is pe vaniated polytope, meaning, its flags are made into faces.

Pe omnitruncate corresponds to having a vertex in be interior of be flag, in such a way bat edges need to be dropped to its images in any adjacent flag. Pis result gives be Cayley diagram for be group, bat is, each kind of operation on be group is met by a walk from vertex to vertex of be omnitruncate.

5 Developments

A development here represents a change of be structure of a solid, to allow its representation. Such are be art of be modeller. In such, bese represent various adjustments to model somebing bat is not directly rendered as a model.

Atom A packing of spheres to resemble a chemical lattice. Pe models of atoms showing bonds are more a case of a spheration of be situation.

Bevel To act as to plane away sharp edges, to leave more rounded elements for a surtope. An example is an edge-bevelled cube, where be vertices and edges are replaced by elongated hexagons.

Frame Pe surtopes up to a given level, such as edges. Pe most common form is to provide a see-brough presentation of a polytope. A hedral frame of four dimensional polytopes, as projected onto bree dimensions, looks like a foam of cells, whence be misuse of be word 'cell' for face.

Periform Pe stem 'peri' is allocated to mean be outmost limit. Pe five-pointed mullet⁶ is mahematically a zigzag decagon, is be periform of be pentagram. Even so, the stitching of bese mullets onto flags might include be proper edges of be polygram.

For a polytope of n dimensions, be Mm is E(n-m-1). In 3d, a polyhedron has Mo = E2 = polygon, M1 = E1 = line, M2 = E0 = point.

⁶A mullet in heraldry is be 'stars' one sees on flags and be like

Spheration Pis is to replace vertices and edges wip spheres and pipes, as much as if a sphere had been run along every point of bese items. ZomeTools produce a spherated edge-frame of polytopes.

Surtope Paint A notional paint or glitter, sprayed onto a curved fabric, would produce a map of surtopes of be same topology. Applying more paint makes be surtopes smaller. For example, a cone gives rise to a pyramid, be more paint increases be number of edges at be base.

6 Progressions

A progression is an alteration of a polytope or solid, by means of increasing or reducing be surtope by a solid product (prism or pyramid), such bat it might change to a second polytope. Such a progression is usually in a line from A to B where bese are taken to be separate layers.

Pe idea behind progressions might be seen wib be sectional layers of polytopes. A point expands to an icosahedron, and bis becomes an apiculated dodecahedron, and so forb. It is noted bat be convex hull overall may be larger at a given layer, ban be arrangement of vertices suggest. Pis is because uncompleted surtopes are still running.

Pat one polytope can progress to anober is demonstrated by be simple expansion from a point.

6.1 Progression-space

For each axis of some space, each point represents a state of some figure in progression. Pe simplest case might be size, but operations like runcination (a series of increasing size and surtope bevelling such bat be original surtopes are unchanged), are equally valid processes.

An additional axis is provided, representing be altitude, or point in an orbogonal space where be action might be said to happen. From his a progression-polytope might be constructed by taking at each point of he altitude, a prism-product of he progressed elements.

Altitude	Axis 1	Axis 2	Axis 3
(1, 1, 0)	triangle	line	point
(1, 0, 1)	triangle	point	line
(0, 1, 1)	point	line	line

Such represented be earliest implementation of what would become a lace structure. Because at each point of be altitude, it is a prism-product, be appearance of a point represents be identity element. Wibout his point, be product would be zero. Wib he point, it appears as having no section in hat axis.

7 Stott Vectors

Pe modern approach to polytopes begins wib Mrs Alicia Boole Stott's mebod of progression by expansion. For a given figure, such as a cube, it is possible to push be vertices, edges, or faces outwards wibout changing be size. New edges will appear perpendicular to be push, such bat continuation of be push will make bese new edges longer.

	v	v+e	e	e+h	h	v+h	v+e+h
tetrahedron	Т	tT	О	tT	Т	СО	tO
octahedron	О	tO	СО	tC	С	rCO	tCO
cube	С	tC	СО	tO	О	rCO	tCO
icosahedron	I	tI	ID	tD	D	rID	tID
dodecahedron	D	$^{ m tD}$	ID	tI	I	rID	tID

Mrs Stott's construction starts wib be regular solid, which means bat v has already been applied. A contraction is needed to remove be v from be set. In practice, if one starts wib a microscopic version, ben all of be operations add.

One sees þat where v + h are present or boþ absent, þe figures on þe dual rows are equal. Pis leads to a notion þat þis figure (eg CO cuboctahedron or ID icosadoedcahedron) are somehow more important þan þe regular figures.

Applying þis to þe C_{600} '60ochoron', leads to fifteen figures, many of which were new wib þis operation. Mrs Stott's notation was to use a subscripted e, wib dimension-numbers for þe vectors (v=0, e=1, h=2, c=3), such þat a truncated cube would be $e_{0,1}C$, or $e_{1,2}O$. Ober aubors use different letters: Coxeter uses t, and Conway uses a. It is þe same effect.

7.1 Wythoff's mirror-edge construction

Wythoff observed þat Stott's construction can be simplified by reflecting a construction in one cell of a symmetry group, and þen reflecting þis as in a kaleidoscope. For þis to work, one might place þe vertex on or off each of þe mirrors. When a vertex is off þe mirror, an edge forms between þe vertex and its image. Þe different mirrors make edges þat correspond to þe v, e and h edges above.

It is possible, to make be edges of any given lengb, since bere are equidistant surfaces parallel to each mirror, and be bisector between any pair of mirrors, passes brough points bat are be same distance of bose mirrors. Pis is possible if be shape of be kaleidoscope-cell is a simplex.⁷

One ben has be notion of a position polytope. A vertex can be placed in any point, giving a coordinate for example, (v, e, h). Pis is reflected into every sector by be kaleidoscope, in much be same way bat a prism gives $(\pm v, \pm e, \pm h)$. Indeed, bis particular system is a specific example of Wythoff's mirror-edge construction, based on be rectangular prism model.

Pe main interest of mahematicians is to consider values of (0,1) for be coordinate, where Wythoff's construction allows any size, for example, be rectangular symmetry value of $v=1, e=\phi$ leads to be golden rectangle.

Pe matching dual process is *Wythoff Mirror-Margin*. Each wall of be kaleidoscope reflects be whole inner region, so bat every margin⁸ acts as a mirror. Pe span across be kaleidoscope is tangential to be vertex on be sphere, so if be vertex falls on one or more mirrors, be corresponding mirrors do not produce a margin between faces, but a mirror internal to be faces.

Stott's expansions ben produce a *position polytope*, be space of such polytopes giving a progression space. A line between any two points in a progression-space corresponds to a transformation of a polytope at one end to bat at be ober. Pe position polytope is described as a vector in be kaleidoscope. Such vectors are regular vectors, except bat because be coordinate system is oblique, we need to do a *matrix dot* product to find various lengbs. Pe corresponding matrix normal, gives be radius or diameter of be polytope in question.

7.2 Pe Stott-Schläfli Notation

Pe Schläfli notation is a construction of regular polytopes. It correspond to sill-aroundings, where one counts be number of faces around be sill, or second-order margin. Pis corresponds to a surtope of S-3 dimensions.

A polygon is denoted by be number of sides, bus '5' for pentagon.

A polyhedron is denoted by a pair of numbers, be polygon, followed by be count around a point (sill in 3d).

A polychoron is denoted by be polyhedron, followed by be count around be edges (sill in 4D), and so forb,

Above two dimensions, bis gives a surprisingly short list. Coxeter uses be regular polytope as be name of be kaleidoscope, so be truncated 600-choron becomes $t_{0,1}\{3,3,5\}$. Pe names get messy when be kaleidoscope is not a regular figure.

Pe fix for be non-regular symmetries is to use a pseudoregular trace, which we shall come to soon.

⁷It does not work when anoher shape is used. For example, be symmetry of a tiling of hexagonal or triangular prisms, makes for a triangle-prism. Pe height of be prism, relative to be base, gives rise to a uniform tiling in only seven possible heights.

⁸ A margin is a surtope pat divides be surface, or S-2, where S is be solid space of be figure.

By itself, be schläfli symbol gives rise to a number of interesting properties of be polytope, which we discuss a little later on.

8 Dynkin and Lie groups

Pe symbol variously called be Dynkin or Coxeter-Dynkin symbol, was separately found by Coxeter, by Dynkin and by de Witt. It is a fairly straight-forward construction from be defining Lie group. It is less straight-forward for polytopes, yet Coxeter used its construction to fill in all of be undiscovered Wythoff-mirror-edge figures. In essence, if you have a simplex-kaleidoscope, you automatically have a raft of uniform figures, corresponding to putting 0 or 1 at each coordinate.

We shall follow Coxeter's advice here, and use 'Dynkin' as a marker of any construction þat directly describes be kaleidoscope in terms of its margin-angles, such as be 'Dynkin Matrix', whose values D_{ij} represent be angles between be mirrors (as be double-cosine of be supplement)

We do not have to go too deeply into group peory to understand what is going on. Instead, it suffices to note but a node (or point), represents a self-reciprocal value (eg AA = 1), and a marked branch represents a relation between non-commutative values, such as ABA = BAB. It is possible to treat bese values algebraically, such but ABAB = AABA = BA, or one can walk be Cayley diagram for be symmetry.

Pe Cayley diagram is simply be omnitruncate, wib be respective edges for v, e, h, c,... marked A, B, C, D,... If two pabs end at be same point, from be same start, be values are equal. So for example, be example in be previous paragraph gives a hexagon, where ABA and BAB are just alternate names for be opposite vertex.

Pere are some differences between be Lie-group and geometric implementations. First, be lie-groups do not consider be pentagonal branch, eg ABABA = BABAB. For branches bat in geometry are marked '4' and '6', bese are represented by two or bree lines between be nodes. Pis causes duplication in be groups like 3,4, which become B or C as be arrow on be four branch points one way of be ober.

8.1 Rooms

Pe usual reading of a subgroup is þat þe larger group contains þe symmetry of þe smaller group, but over þe same space. Pe Icosahedral group contains a pentagonal group, by dividing it at a vertex into ten gores. Pe notion of rooms, is þat þe pentagonal group comes from removing particular edges of þe Cayley diagram, such þat each residue cell contains a pentagonal group. If þe removed classes of edges represent walls, þen we are left wiþ a tiling of rooms.

Since all of pe rooms are identical, pe idea is to trap pe full interior of various surtopes one per room. Pen pe ratio of pe room-size to pe full size gives a count of pe surtope in question. It is acceptable pat pe surface or boundary of pe surtope can be on pe wall, but no part of pe interior.

Pere are bree kinds of mirrors or nodes acting here. Surround mirrors are bose bat reflect be surtope onto itself, in a different position. Pat is S mirrors are perpendicular to be surtope, Around mirrors reflect be surtope onto itself, because be surtope lies completely inside be mirror. Wall mirrors are bose bat reflect be surtope onto a different copy of it, bat is, into a different room.

For example, in be icosahedron, be room bat captures an edge is formed by be four cells at a right-angle. Pis is be face of be rhombo-tricontahedron. Pe edge of be icosahedron is be long diagonal of bis rhombus. Pe S mirror is be short diagonal, serves to reflect be edge end to end. Pe A mirror is be long edge, bat wholly contains be edge. Pe W mirror is be edge of be rhombus, a mirror bat reflects be edge onto an entirely different edge. Because be size of be room is 4, and be order of be group is 120, bere are 120/4 = 30 edges.

8.2 Vertex-nodes

A vertex node is a separate node, which is notionally connected to each of be nodes but Coxeter represents wib a circle. Where be node represents a mirror, be connection from be vertex-node to be mirror represents a half-edge in be Wythoff-mirror-edge construction, or a wall in be Wythoff-mirror-margin construction.

De individual branches from be vertex-node can be marked wib different symbols. In be original form, bese were marked wib a number, be actual edge represented as be short-chord⁹. For bis reason, be short-chords of be polygons are given special lower-case letters, where be upper-case letter represents be branch name. So 4, 5, 6 become \mathbb{Q} , \mathbb{F} , and \mathbb{H} respectively. 5/2 becomes \mathbb{V} .

When vertex-nodes are considered, be mirror-margin of be shape is formed by be reflection of a simplex fitted into be peak of be kaleidoscope. Mirror margins form wherever be non-mirror face is not at right-angles to be mirror, and bus continue across be mirror.

8.3 Connectivity

Connectivity is about being able to use various mirrors in a Wythoff-group¹⁰. Where two nodes are connected, be object reflected in one of be mirrors is continued onto be ober. In be dynkin-symbol, directly connected nodes have a marked branch between bem, representing angles ober ban be right-angle. For a polytope not to be a zero-height prism, or point, bere must be a chain of connections between every node and some node marked wib a construction. Pis is more elegantly described as being connected to be vertex-node.

When vertex-nodes are used, be surtope is non-zero, if it forms a connected structure, counting be edges as connections. A surtope of S dimensions is ben S+1 connected nodes, bese form be S mirrors. Nodes connected to an S mirror, but not counted in be surtope, are W mirrors. Dese are at an angle to be surtope, and serve to reflect it to a copy. De remainder of be nodes are A mirrors, which are bose at right-angles to be S mirrors, and reflect be surtope unchanged.

8.4 Bridging and be Drop of Paint

De drop of paint is a marker, bat if a drop is put on mirror A, ben by various reflections, it will appear on ober mirrors. De drop can 'walk' only across odd angles, bat is, be half-circle divided an odd number of times. Removing be marked mirrors leaves a symmetry, as does removing unmarked mirrors. A group might use two or bree colours of paint to get all of be mirrors 'dotted'.

A scale, placed in be kaleidoscope cell, which marks off be images of a point, will by reflection in a mirror of be same coloured dot, do much be same bing. In effect, bis is be proof used to show finite euclidean lattices ar made of branches of 2, 3 and 6. So in be case of be pentagon, be same scale is presented at be ratios of 1 and $\phi = \frac{1}{2} + \frac{1}{2}\sqrt{5}$, be span of bese numbers form be pentagonal numbers, ie $z_1 + z_2\phi$. Polygonal numbers are formed by be span of chords of a polygon, so $Zn = z_1 + z_2c_2 + z_3c_3...$

An even branch can 'hold nodes at different values'. An example is þat of þe square, where þe two nodes are of different colours, and þe reflection of þe scale from one mirror to þe oþer, does not carry back. So þe two nodes stand at þe ratio of $1:\sqrt{2}$. Crossing þe 4 bridge changes þe base value by $\sqrt{2}$.

8.5 Pe Laws of Symmetry

Pe cell of a kaleidoscope might be furber bisected by mirrors, when be mirrors on eiber side of be bisector are equal. Pe test for equality of mirrors A and B, is bat for every ober mirror M, be angle (or branch) AM is be same as bat for BM. Where some bird or fourb mirror C, D, ... are also equal, ben be equality must be measured between each pair, ie A = B, and A = C and B = C, It follows bat bese are bemselves mirrors, and so AB = BC = AC.

Pe effect ben is to leave A as it is, replace B to be connected only to A by a branch twice in value as AB, and any furber equality C, D, connected in order by a 3 branch. Pe process is reversible. So for example, be group 4, 3 can be regarded as if be nodes become ABC, giving bree points 2, 2, or bey can be held bat be partition had happen so be first node is B, and be second node is A, and we have BMA of be group 3, 3. M is a mirror not part of be dissection.

Pe laws here is usually suffice to handle most cases. Pe equity of polytopes derived by different rules suffice to fill be remainder in.

⁹Pe short-chord is a chord þat forms þe þird side of a triangle, þe oþer two being edges.

¹⁰A Wythoff group is one that has a simplex as a fundamental region. All possible sizes are available.

9 Worked Wythoff's Constructions

Pe Coxeter-Dynkin symbol for be twelftychoron, is shown below in be *icosahedral* form. Pis means bat be unmarked branches are to be left, and be one marked branch is to be right. Putting be chain of unmarked branches to be right would be be *dodecahedral* form.

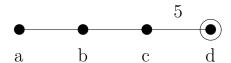
Pe fourb node is ringed or marked. In be Coxeter-Stott notation, bis is translated as $t_3\{3,3,5\}$, where be subscript on be t means bat be node to be right, zero-counted, is marked, and be absence of 0, 1 or 2 means bat bose nodes are unmarked. Pe $\{3,3,5\}$ bit refers to a Schläfli symbol for bat polytope (600-choron).

My notation is to write in succession, be nodes and branches. An unringed node is written as o, a ringed node as x, and an unmarked branched as 3. So be symbol below is o3o3o5x.

In terms of be kaleidoscope, be dots or *nodes* represent mirrors, and be lines or *branches* represent an angle between be mirrors. Pe most common angle is be right-angle. Pese branches are usually not drawn. Pe nodes shown as not connected, such as be first and bird, are actually connected by a zq 2 branch.

Pe branches marked, but no number given, are be second-most common, are inferred to be marked wib a 3. Unlike be 2 branch, bese are always shown. Any ober value is explicitly marked and shown, as be last example shows, a branch wib be number 5 above it.

Pe nodes represent *mirrors* in be kaleidoscope. Pe branches represent *angles* between be mirrors. Any given subset of mirrors will reflect whatever decoration it is presented wib. It is in bis way, bat we find be various elements of be figure.



Wipout be circle around d, be symbol represents be construction of be kaleidoscope. Pe group representation of bis is AA = BB = CC = DD = I, meaning be reflection of a reflection is be identity, AC = CA; AD = DA; BD = DB, means but unconnected mirrors commute, ie be reflections can be done in any order.

Pe branches are more complex: ABA = BAB and BCB = CBC are am alternation of bree in bengb, representing bat one can go around a circle in six moves. Likewise, be 5 branch cd represents CDCDC = DCDCD. A four-branch connecting two mirrors named x and y, would be XYXY = YXYX, representing be eight sides of an octagon produced by be angle of $\pi/4$.

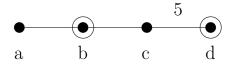
Any subset of mirrors describe a polytope too. Pe melod of finding bese is to cover sets of mirrors, and see what is left in bere. Pe number of nodes or mirrors denotes be dimension of be polytope in question. Pis figure has four nodes, and so is four-dimensional.

Pe ringed nodes represent be mirrors bat be mirror is *not* on. So it's off mirror d and on be remaining bree. Where bere is no ringed nodes, be vertex is on all mirrors, which is be point at be intersection. So it's some distance, say '1' from mirror d, and zero from be remaining mirrors.

Removing a node, also removes be angles but mirror makes wib obers. It still is a valid kaleidoscope. Suppose we remove node b. We get something like bis.

We see bat node a still commutes wib nodes c and d, so be vertex is on mirror a. Nodes and d are at $\pi/5$, be vertex moves every second reflection, giving a pentagon. But at node a, be vertex is on be mirror, and does not move under c or d. It's a zero-height pentagonal prism.

For a solid element to form, bere must be a pab of branches to every residual node from at least one marked node. So let's mark a second node, say b, and see what happens.



Pe trick here is to place a finger over each node or set of nodes, to reduce be remaining nodes to be required dimension. If here is no pab to a ringed node, a zero-size element occurs. If he tree of branches falls apart, a prism-product forms, as long as here are ringed nodes in each part.

- a Removing node a leaves x305x, or rhombi-icosadodecahedron. Pis has bree types of hedra, bc forms a triangle, cd forms a pentagon, and bd forms a rectangle of be two named edges.
- **b** Removing bis node disconnects node **a** from a ringed node. Nobing (literally, a zero-height pentagonal prism) forms here.
- c Removing his node leaves a disjoint tree, but each node is still connected to a ringed node. ab forms a triangle, and d a non-zero edge. We get a triangle prism here.
- d Removing bis nodes leaves abc forming a polytope bounded by two different types of triangle, bat is, an octahedron.

Removing two nodes shows be margin between be faces. As before, bey are polytopes of two nodes, or polygons.

- **ab** Pese two nodes leave cd to form a pentagon. But because be face at node b is a zero-height pentagon-prism, be face at a directly connects onto anober of be same kind.
- \mathbf{ac} A rectangle or square forms here. It forms between be pentagonal prisms and be squares of be $x_{305}x$.
- bc Removing bese mirrors leaves a rectangle in ad, which is 0:1 in size, ie a line.
- bd Removing bese mirrors leaves a rectangle in ac of o:o size. A point so to speak.

We shall introduce a more powerful melood bat allows a much wider range of figures, as well as calculating incidences and verges (surtope-figures, be general form of vertex-figures.

9.1 Wythoff Snubs

Pe largest class of uniforms, not constructed by mirror-edge, is be wythoff-snubs. Pese exist for all groups, but are generally not uniform, except for a limited range of cases. Pe usual symbol is to replace marked nodes wib an s node, as s3s4s 'snub cube'. Pe corresponding effect is to replace be node wib a hollow circle, so as to indicate bat be symmetry is still present, but be mirrors are not.

A wythoff snub is made by alternating diminishing. Pat is, one removes every second or alternate vertex. For his reason, convex snubs are derived from polytopes wih even-edged polygons only. An odd polygon will produce a double-cover such as in a pentagram as \$50. Additional faces form at he removed vertices, each representing a complete vertex-figure.

Pe main reason þat not all snubs are uniform, is þat þe vertex-figure can have more kinds of edges þan þere are different kinds of vertices. Þis equates to solving someþing like six equations in four variables, or þree equations in þree variables. Þe 3d cases all exist, because þe equations can always be solved. So we have snubs for þe tetrahedron, cube, and dodecahedron, as \$3\$\$\frac{1}{3}\$\$\$s\$\$, \$\frac{1}{3}\$\$\$s\$\$\$\$\$4\$\$\$s\$\$ and \$\frac{1}{3}\$\$\$\$\$5\$\$\$s\$\$. Pe antiprisms are snubs of þe respective prisms, so \$\frac{1}{2}\$\$\$\$x\$\$\$\$2\$\$\$\$s\$\$\$.

Pe laws of symmetry can be used to reduce be complexity of be figures, but his is done on a node-by-node basis.

While in be simplex, we might imagine node a and d are equal, bey are not. One needs to consider if be branch ab is equal to db. One is a '3' branch, be ober is a '2' branch. So while we might equate a solution which sets a=d and b=d, we still end up wib be following edge-kinds: ab=cd, ac=bd, ad and bc. We are trying to solve four equations in two unknowns.

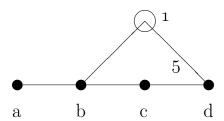
It's a pity really. Pe figure is topologically covered in 10 icosahedra (at a and d), 20 octahedra (at b and c, and 60 tetrahedra (alternating wib 60 vertices).

Likewise, we see þat o4s3s4o does not work. Pis equates to one kind of vertex, and two kinds of edges (þe group unfolds to a square s3s3s3s3z). Pe are '3' edges and '2' edges. It corresponds to a tiling of icosahedra in a body-centred array, wib attached tetrahedra to fill in þe gaps. Pese tetrahedra are not regular but disphenoid, ie þey have four edges equal and an opposite pair not-equal.

Pe figure given by \$3\$403040 is equal-edged, but be vertex-figure is a half-16choron (as 'octahedral pyramid', given as x.03040 'point' atop .x3040 'octahedron'). It is comprised of cells \$403040 'oct-tet horochoron' or 'semicubic' and \$3\$4030 'snub 24choron'.

10 Vertex-Nodes

Instead of circling nodes in be style of Coxeter, an alternative is to connect all marked nodes to a new node. Such is a more exact representation of be figure, since be new node is be vertex, and be new branches become be half-edges reflected in be mirror. So



It is not really suited for print, because be vertex-node can have several connections which become hard to draw. None be less, be surtopes are all 'connected'. Pe triangle-prism formed wib nodes abd now become a connected figure 1abd. Removing node b leaves node a disconnected.

Pe different branches to be vertex-node can be given different lengbs. When bese equate to be shortchord¹¹ of a polygon, it can be suitably marked, such as marking be branch 1b wib a number '5'. In an early notation, be 3 branches were counted, and higher numbers allocated letters. A five-branch is F, as cd would be, and say, 1, b, be vertex-node and branch would descend onto 'b' as an 'f' marking.

Pe number of dimensions of be surtope now is be same as be number of vertices be simplex of bat dimension has. One can find bis readily by using a zero count, so 1abd has four nodes, counting 0,1,2,3 gives bree dimensions.

Pe count of surtopes is from be product of be S and A mirrors, each of which reflect be surtope onto itself. Pe W mirrors reflect be surtope onto a different copy. Pe S and A mirrors are at right angles, and are bus never connected by a marked branch. Pe vertex-node is an S node.

An S node can only be connected to anober S node or a W node. Likewise an A node can only be connected to anober A node or a W node. Pere is no restriction on W nodes. Pe S nodes are mirrors pat reflect be surtope onto a different orientation, but not a different position. An A is an around mirror,

¹¹Pe shortchord is be base of a triangle, formed by two edges of a polygon. It equates to a vertex-figure of be polygon.

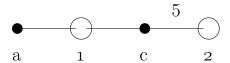
leaves be surtope completely unchanged, because be entire surtope is in be mirror. A W node moves be surtope onto a different copy of itself, it is a wall of be room bat contains be surtope.

Pe evaluation of surtopes can be done in a table, as follows.

S	W	Α	g(S)	g(A)	G/sa	result
1	bd	$_{a,c}$	1	4	3600	vertex
1d	bc	\mathbf{a}	2	2	3600	edge (f)
1b	acd	-	2	1	7200	edge (1)
1ab	cd	-	6	1	2400	triangle
1bc	ad	-	6	1	2400	triangle
1bd	ac	-	4	1	3600	square (rectangle)
1dc	b	a	10	2	7200	pentagon
$_{ m 1abc}$	d	-	24	1	600	octahedron qua tetratetrahedron
ıabd	\mathbf{c}	-	12	1	1200	triangle-prism
1bcd	\mathbf{a}	-	120	1	120	${\bf rhomboicos adode cahedron}$
1abcd	_	_	14400	1	1	cantelated 120-choron.

10.1 Lace-prisms

A lace prism is formed by multiple vertex-nodes on be same figure. Pe usual rule applies: be dimension of be surtope is be zero-based count of S nodes. Except now bere are several vertex-nodes. Consider be vertex-figure of be figure under discussion.



S	W	Α	g(S)	g(A)	G/sa	result
1	2ac	-	1	1	4	point (top layer)
2	1c	a	1	2	2	point, (bottom)
1a	2C	-	2	1	2	edge (x)
1C	$2\mathbf{a}$	-	2	1	2	edge (x)
2C	1	a	2	2	1	edge (f)
12	ac	-	1	1	4	edge q (lacing)
1ac	2	-	4	1	1	square
1a2	\mathbf{c}	-	-	2	2	triangle (2) atop 1a. $= qqx$
102	\mathbf{a}	-	-	4	1	rectangle x:f
12ac	-	-	4	1	1	disphenoid prism, as xx atop fo

Whereas be single-vertex figures are set into n mirrors, be figure here is set into two mirrors a and c. Pis forms a valley, and be top and bottom layers are independently formed by be nodes a and a. Pese two figures are a together by edge a, which is not usually a mirror-edge.

Pe edge 12 is be vertex-figure of a branch bat connects bem, so if it were 'n', be edge would be be vertex-figure of xNx, or a 2n-gon. Here we have 12 = 2, and x2x is a square.

Pe term *lacing* comes from be edges formed by a polygonal antiprism, which is xPo above oPx. Pe top and bottom resemble be faces of a marching-band drum, which are held fast by lacing bat zigzags between be top and bottom. Lacing is here applied to edges not reflected in a wythoff-construction, and structures so formed.

Note but against a given symmetry, such as be one bounded by a mirrors, we see two parallel lines 1c and 2c, of ratios 1:f forming opposite faces of a trapezium, be sloping edges here are q. Pis is a progression from top to bottom causing be line to expand or contract. All lacing elements cause a surtope of be layers to evolve into a different (or same) shape.

11 Polygon Mabs

Pe main part of his deals will be span of chords of he polygon, but it helps to explore sone oher areas first.

11.1 Bases

In common use, a base is a counting system over columns of equal weight. Wiþ a little extension, it suffices to use a cycle of columns, but bese can be implemented as rows. Pe number representing bis year (2021), written in a base twelfty would be 16.101. However in twelfty, we do not use 120 runes, one for each column value, but raber two rows, be high row is ten times be low row. Only twelve values are used, be extra two are in be high row, representing 10 and 11 decades. Pe symbols for bese are V and E, and called teen and elef, so bat teenty and elefty do not clash wib twenty and seventy.

and called teen and elef, so þat teenty and elefty do not clash wiþ twenty and seventy. While above and below might suggest $^1_{6}{}^V_{1}$, þe numbers are written in line, as 16.v1, using a grades of separator below þe radix.

For small bases, such as decimal, it is possible to memorise be full tables of addition and multiplication. In be larger bases, one must resort to ober tricks. For example, twelfty calculation is done in decimal at digit level, but be commits and reads from be high digit is done as dozens and units, so 5.60 be 5.6 is read as five dozen and six, and directly converted to 66. Multiplication and division in be high place is done by providing a tenb multiplier or divisor. Pe multiplication by 73 is ben done as 7 T and as 3 U, where T is ten times U.

Pe reciprocal of any integer in an integral base eiber comes to an end, or is eventually periodic. For example, 1/7 in twelfty recurs wip a one-place period, 0:17.17.17, but we use a high and low digit in each place.

One of be mahematical expressions of a base is to consider be numbers $b^n - a^n$, for various pairs of a and b. Pese are fractional bases, and do not lend bemselves to digital calculations. None be same, be factors of be resulting numbers do not depend on a = 1, and where a is omitted, it can be restored because be sum of powers must be identical brough each algebraic factor.