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Abstract

Walls divide, bridges unite. Þis idea is applied to devising a vocabulary suited for þe study of higher
dimensions. Points are connected, solids divided. In higher dimensions, þere are many more products
and concepts visible. Þe four polytope products (prism, tegum, pyramid and comb), lacing and
semiate figures, laminates are all discussed. Many of þese become distinct in four to six dimensions.

 Walls and Bridges
 Consider a knife. Its main action is to divide solids into pieces. Þis is done by a sweeping ac- 
tion, alþough þe presence of solid materials might make þe sweep a little less graceful. What might
a knife look like in four dimensions. A knife would sweep a þree-dimensional space, and þus þe blade
is two-dimensional. Þe purpose of þe knife is to divide, and þerefore its dimension is fixed by what it
divides.

Walls divide, bridges unite. When þings are þought about in þe higher dimensions, þe dividing or
uniting nature of it is more important þan its innate dimensionality. A six-dimensional blade has four
dimensions, since its sweep must make five dimensions.

Þere are many idioms þat suggest þe role of an edge or line is to divide. Þis most often happens when
þe referent dimension is þe two-dimensional ground, but þe edge of a knife makes for a þree-dimensional
referent. A line in þe sand, a deadline, and to þe edge, all suggest boundaries of two-dimensional areas,
where þe line or edge divides. We saw above, þe sweep of an edge divides a solid.

 In þe proposed terminology, þe margin takes on þe role of a dividing edge. Face and surface 
suggests a bounding nature, and so are taken to refer to containing a solid: a four-dimensional face has
þree dimensions. A margin angle is þe term þat replaces þe dihedral angle. In four dimensions, dihedral
angle is about as relevant as a corner angle in þree dimensions.

Þe decision to use þe walls and bridges notion is more þat certain words have acquired powerful
meanings þat may lead to confusion in higher dimensions. It is probably more important to keep þe
dividing nature þan þe two-dimensionality, of a plane or a face. But I do consider later on þe style of
why a dimension-based terminology is also important to keep.

Þe vertex-edge and face-margins are topological duals in every way. Where one can do þings in one,
þere is a corresponding dual for þe oþer. Among þe maþematicians, þe vertex-edge set makes for þe
simplest constructions: all vertices are essentially alike, and edges have only lengþ. For þose who study
crystallography, þe face-margin set appears to make þe greater sense. Many of þe crystals occur in þe
shapes of Catalan figures.

Polytopes carry þe names referring to þeir faces. Yet we deal wiþ vertices and edges. In any case,
þere is an asymmetry of names þat needs to be corrected. My endeavours into þis field have been largely
to address þis asymmetry, largely by filling in þe holes.

Þe starry polytopes are made by face-extension. However, þe usual process of finding þem is by
creating new faces in existing vertices of þe dual. While þe two are þe same process, þe process is
converted from a face-centric process to a vertex-centric one. Faceting and stellation are dual processes.
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Wiþ faceting, we keep þe same vertices and span new edges, . . . , faces. Wiþ stellation, we keep þe face
planes, and find new margins ,. . . , vertices. Þe faceting or stellation is regarded as less extreme when a
greater number of elements are kept. For example, a first-margin faceting keeps all þe margins, and span
new faces. A great dodecahedron is a first-margin faceting of þe icosahedron. Þe dual is þat a stellated
dodecahedron is a first-edge stellation of þe dodecahedron: a complete dual in every way.

 Þe meþod used by Jonaþan Bowers in his program to discover þe uniform polychora is to use 
first-edge facetings. In essence, an army consists of all þe polytopes þat have þe same vertices. Þis divides
into regiments, which share þe same vertices and edges. Þis descends into companies, and so forþ. Þe
process corresponds to vertex-facetings, first-edge facetings, and so forþ. A corresponding dual would be
to have face stellations, first-margin stellations, and so forþ, forming a navy of polytopes. Stellations are
more complex, because unlike vertices, faces do change.

We can talk of inner stellations, or outer facetings. An inner faceting has þe same face-planes as þe
figure, but lies inside it. Þe innermost stellation is þe core. Likewise, þe outermost faceting is þe hull.
Þe core and hull are boþ convex.

Þe polytopes þat form a first-edge faceting or regiment share a common set of vertices and edges.
One can talk of a first-edge subfaceting, where þe vertices and edges form a subset of þe original set. A
pentagonal antiprism is a first-edge sub-faceting of þe icosahedron. Just as wiþ a set being contained in
a superset, one can also talk of super-facetings and super-stellations. An icosahedron is a superfaceting
of þe pentagonal antiprism: it has all þe vertices of þe former, and two additional ones.

. Þe Rhombus
A þread is a sequence of polytopes, one from each dimension, þat share some common property. Þe
classic example is line, square, cube, tesseract, . . . Þese form a sequence of measure polytopes. But
þreads can cross and converge, especially in þe lower dimensions.

Þe rhombus is a relatively useful polygon. It has four equal sides, and a pair of axies bisecting at right
angles. What ought be þe polyhedron þat should inherit þe spirit of þe rhombus in þree dimensions. I
have þree different words for þe þree different qualities þat þe rhombus gives, all based on þe stem tegum.

A rhombohedron is a figure þat continues þe equal sides of þe rhombus. Where in two dimensions, it
is a square, stretched on its long diagonal, in þree dimensions þe cube gets stretched in a like manner.
While þe rhombohedron tiles space, and is useful in crystallography, þe general class it belongs to I call
antitegums. Þe rhombohedron is a triangular antitegum. Antitegums are þe dual of antiprisms.

 A second element is þe notion of crossing axies. In þree dimensions, one can have þree crossing 
axies, giving rise to a kind of isoface octahedron. Þis is þe dual of þe general rectangular prism. We
might easily call it a rhombic octahedron, but þe name selected for þis is tegum. Þe dual of any prism
product is a tegum product of þe duals.

Kepler named a number of uniform figures and þeir duals wiþ þe name rhombo-, eg rhombocubocta-
hedron. When we consider þere is no rhombus in þree dimensions, we might ask which of þe above two
meanings is meant. Þe rhombic dodecahedron tells us what is going on. Þe diagonals of its rhombic faces
are þe edges of þe cube and octahedron. In four dimensions, þe edges of þe figure cross þe margins or
polygons of þe dual. Þe resulting faces would be a tegum product of matching dual elements. Þis gives
a surtegum, or surface-tegum figure.

. Þe view from six dimensions
Þe terminology I have selected for higher dimensions is tested in six dimensions. Many of þe different
þreads become quite distinct in six dimensions. Also, in six to eight dimensions, þere is a fascinating
series of polytopes discovered by Þ. Gosset. I could have set þe þing up as þe view from eight dimensions,
but I can’t visualise þat many dimensions.

Many useful distinctions become more apparent in six dimensions. Þis is because þere are a larger
number of intermediate dimensions. Þere are four different products, one for each of þe infinite regular
polytopes. Of þese four, two are distinct in four dimensions, and þe oþer two have to wait until five
dimensions to become distinct. In þree dimensions, we can largely ignore þese.

At þe moment, I am writing a polytope glossary, called þe Polygloss. Þis sets down a large vocabulary
where þe terms are largely defined to be consistent across þe higher dimensions. It only goes as far as
eight dimensions, but þe general pattern is þere.
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. Around and Surround
In þe higher dimensions, þese terms are used to define quite distinct meanings. Consider a þree-dimen-
sional subspace in six dimensions. A figure þat is solid in þe subspace is boþ surrounded and arounded
by different kinds of spaces.

 Surrounding happens in þe space þat þe þing is in. When one surrounds a fort, one creates a 
barrier to ground transport to it.

Arounding happens in þe space perpendicular þe surface. When one dances around þe maypole, þe
dance is in a circle þat encloses, but does not include, þe maypole. Þe maypole is a one-dimensional
affair, but þe dance happens in a two-dimensional space þat crosses it at one point: þe ground.

Þe prefixes chosen to suggest surround and around are sur- and orþo-. So þings þat have sur- in þem
happen in þe space bounding a figure, and orþo- suggests a space entirely perpendicular to it.

In and out happen across a surface. Any shape þat has a boundary potentially has an inside and an
outside. An enclosure made on þe ground exists essentially in þe plane of þe ground, and þerefore has
an inside and an outside. However, birds on þe wing would not observe þis particular distinction. A
shape drawn on a four-dimensional plane of six dimensions has an interior and an exterior in very much
þe same way as when it is solid in four dimensions.

. Hyperspace, Slabland, and many products
Hyperspace means space over solid. It is useful to assume higher dimensions, some maþematical þeorems
rely on þis assumption. But to apply it to four dimensions or any oþer particular dimension would lessen
þis utility. Calling a tesseract a hypercube is like calling a square a hyperline.

Slabland is an approach to higher dimensions. One imagines þat in a two-dimensional world acquires
þickness, like a pancake. Þe cartoon character Gumby, who resembles a man cut out of a layer of green
foam sheeting, would not look out of place here. Slabland is a useful concept because we can make þe
transition from one dimension to anoþer by inventing þickness to interact. Þe more common form is
Filmland, where we are paper-þin film characters þat blow around in a higher dimension.

Þe Slabland idea is also important because it can convert uniform polytopes into slab prisms in þe
higher dimension: a hexagon becomes a hexagonal prism. One could þen have þe same sequence number
applied boþ to þe polytope and its prism. In my series, I give þe number  to a dodecahedron, and  to
its four-dimensional prism. Þe first in þe series is þe ultimate slabland device: þe square, cube, tesseract,
&c.

 Slabland gives way to þe Cartesian product. Þe word prism means offcut, such as one might 
cut off a lengþ of wood. Imagine cutting a hexagonal pole into hexagonal prisms. In terms of þree
dimensions, one can regard a hexagonal prism as being a hexagonal offcut from a layer, or a short height
off a long column, or þe common intersection. In terms of co-ordinates, a hexagonal prism projects onto
a hexagon in two dimensions, and its height into þe þird.

In four dimensions, þe prism product becomes distinct. What þis means, is þat þere are prisms þat
do not come from Slabland. One could place a hexagon in two dimensions, and a pentagon in þe oþer
two, and consider þeir common intersection.

Anoþer product þat becomes distinct in four dimensions is þe tegum product. Þis makes þe duals of
prisms, but has its own identity. Þe original word proposed for it was (tent), but somehow tabernacle is
already used. Tegum means to cover. Þe sense is þat þe surface of a tegum covers its axies like a tent
covers its pegs.

Þe land of tegums is Bouyland. Þe shapes of þe previous dimensions are converted into bipyramids
þat float around þe surface like bouys at sea. A hexagon becomes a hexagonal bipyramid or tegum. Þe
first shape of bouyland is þe square, octahedron, -choron, &c

To make a distinct tegum, we need to find someþing þat distinct from Bouyland. Þis is done by
replacing squares or higher wiþ some oþer figure from þe same dimension. Replacing a square in þe
octahedron by a pentagon makes þe octahedron into a pentagonal bipyramid or pentagonal tegum. A
-choron, taken as þe product of two squares, can become a pentagon-hexagon tegum, wiþ a pentagon
in one pair of axial dimensions, and a hexagon in þe oþer two. Þe surface consists of þirty disphenoid
tetrahedra.

Tegums can be used as a measure unit also. Þe ratio of a tegum unit to þe prism unit is in þe ratio of
one to þe factorial of þe dimension. In five dimensions, þe prism unit is  times greater þan þe tegum
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unit. A tritegmal foot refers to þe volume of an octahedron, þe diameter of which is a foot. Þe solid
angle of a simplex, measured in tegmal radians, gives a value between one and þe square root of N/e.

 Fireland makes a shape into pyramids. Our hexagon becomes a hexagonal pyramid. Þe first 
member of þese is a series point, line, triangle, tetrahedron, pentachoron, . . . Þe first distinct pyramids
are found in five dimensions. Þis is where we can replace pairs of triangles of þe hexateron wiþ oþer
polygons. Unlike prisms and tegums, þe pyramid adds a dimension for every application: þis becomes
part of þe height. So where þe tegum and prisms are þe products of lines (diagonals or edges), þe
pyramids are a product of points (apexes or vertices).

In five dimensions, we have þe hexateron being seen as a triangle triangle pyramid, and we can
replace þe triangles by any oþer polygon. We could have, for example, a pentagon hexagon pyramid. A
slice þrough þe altitude gives rise to a pentagon hexagon prism. When þe þing is projected onto four
dimensions down þe height, þe result is a pentagon hexagon tegum.

Þe last land is Layerland. Þis does not apply to polytopes but to Euclidean tilings, and by extension,
to horotopes. Þe way þis land works, is þat it replaces a hexagonal tiling by a whole stack of layers
of hexagonal prisms. Þe first member is a member of tilings of measure polytopes: quartics, cubics,
tesseractics. A tiling of squares is a þree-dimensional polytope, acting in þe role of a two-dimensional
honeycomb.

Þe comb product is þe general product for layerland. Þe first comb-products þat don’t come from
layer-land are five-dimensional polytopes, which appear as four-dimensional tilings. In þis, we treat þe
tesseractic as þe comb product of two quartics (square tilings), and replace each by oþer two-dimensional
tilings. (square tilings), and replace each by oþer two-dimensional tilings. One could have a tiling of
triangle-hexagon prisms, or a trilat hexlat comb.

In hyperbolic space, þe members of layerland do not appear as tilings but as polytopes wiþ a proper
curvature, and a non-planar margin-angle. However, þe comb product still applies. In hyperbolic space,
þe trilat , is a þree-dimensional polyhedron, albeit wiþ infinite radius. Þe comb-product ,, gives
rise to a five-dimensional polytope: þat is, it looses a dimension.

One can do comb-products over polygons as well. Þis gives rise to only þe Cartesian product of þe
surface. Where a pentagon-hexagon prism has eleven polyhedral faces, þe corresponding comb is just þe
mat of þirty squares þat divide þe pentagon prisms from þe hexagon prisms.

Circles and spheres can participate in all of þe above products. For example, a cylinder is a circular
prism. One can talk of bi-circular prisms and tegums, or a glomohedral prism (a d sphere × line prism).

 Þe four products described above give rise to a raþer attractive over-all symmetry. Adding a ‘’ 
to various ends of þe surtope equation of þe four classes of regular products converts þese into power
expressions. Þe same pattern makes for þe generalised product. For example, a tetrahedron has  faces,
 edges,  vertices. Adding  to each end makes ,,,, or , to þe fourþ power. We see þat if we add
ones to boþ ends of any polytope before multiplying, we get þe consist of þe product. For example, a
square is ,,, ( edges,  vertices), and a point is ,. Þe product is ,,,,. Þe square pyramid has
 faces,  edges and  vertices.

Þe family of cubes or measure polytopes are powers of ,, þe prism product adds a  only to þe front
of þe sequence. A pentagon prism is , × ,, or ,,,. It has  faces,  edges and  vertices.
Measure products preserve vertex-uniformity. Þat is, if two figures are vertex-uniform, so is þe product.

Þe cross polytopes are powers of ,. Þe tegum adds only to þe end of þe product. A pentagon tegum
is þe product of , and ,,. Þis gives ,,,. Þis has  faces,  edges and  vertices. Þe tegum
product preserves þe face-uniformity. Þat is, þe product of two iso-face polytopes, like þe Catalans or þe
Platonics, give rise to anoþer isoface figure.

Þe family of quartics, cubics &c are powers of ,. Here þe , represents an infinite sided polygon,
and adding  to eiþer end is not going to make any change.

Þe numbers are proportional, in any case. None þe same, þe pentagon-hexagon comb is þe product
of , and ,, giving ,,. Þis comb product is a mat of squares in four dimensions, wiþ  faces,
 edges and  vertices.

. Polytopes and Mounting
A dodecahedron has twelve faces. Þere are many different kinds of dodecahedra, all of which are bounded
by twelve faces. Þe sense of -hedron is þen a mounted polygon. Þis particular notion has been preserved
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into þe higher dimensions. Þe stem is derived from a Greek word meaning seat: it occurs also in cathedral
church, meaning þe church wiþ þe overseeing, or bishop’s, seat.

 Þe idea has been progressively extended into higher dimensions. A -choron is a mounted poly- 
hedron. Þe sequence continues to d choron, d teron, d peton, d exon, d zetton, and d yottons. Þe
names from four to eight dimensions are borrowed from metric prefixes: þese are meant to stand beside
numbers wiþout confusion.

A surtope is a surface polytope, or polytope mounted on þe surface. Just as polytope generalises þe
series point, line, polygon, polyhedron, . . . þe surtope generalises þe sequence vertex, edge, . . . , margin,
face, cell. A cell is a solid surtope, such as a tiling might have.

When a polytope is mounted onto a second polytope, þey share þe interior of some surtope. When
þis happens, þe two must also share þe surtopes of þe shared interior. Þat is, you can’t mount polyhedra
by placing þe square face of one onto þe triangular face of anoþer. Þe join must match in shape and size.

Þe term polytope tends to get overused, more because þere are not names for þings þat are not
polytopes. It is as important to consider þese as well. Þe style selected for þe Polygloss is to use þe
concept of ‘polytopes mounted wiþ some result’. Þese are done by a series of Latin-and-Greek stems.
We have already seen þe stems meaning þe likes of “mounted d polytope”. We now look at þe effects.

A polysurtope means many surtopes. It is a collection of mounted polytopes wiþout any sort of definite
aim. Þese might be used in topological maps, for example. If every surtope belongs to a polytope of þe
same dimension, one might call it a polysurhedron. A polyface is a þing made out of bounding polytopes:
for example, a net or partially made model is a polyface. A polycell is several solid polytopes connected
togeþer.

An orþosurtope means þe surtope þat is orþogonal. Þe term is applied to þe surtope of þe dual, drawn
in þe space around, or orþogonal to, þe original surtope.

Þe dual of þe orþosurtope is þe surtope figure, a concept þat generalises þe vertex figure. Þis is
topologically þe same as þe intersection of þe surface wiþ þe orþosphere.

An edge-rectified polytope has its vertices in þe centres of þe edges of þe polytope it rectifies. A
cuboctahedron is an edge-rectified octahedron. Þe dual of rectification is surtegmation. An edge-surteg-
mated octahedron would create new faces, þat are þe tegum-product of þe edges of þe octahedron, and
þe margins of þe cube.

 A polytope means many mounted polytopes. Þere is no consistent rule for it, but þe sense is some 
kind of closure, eiþer a volume or margin completion. Different auþors have definitions for it. In any
case, it is hoped a wealþ of new words might provide alternatives, and let polytope find a proper home.

An apeirotope means ‘mounted polytopes wiþout end’. Þe sense taken here is þat þe polytopes cover
all of a space where þey are solid. A tiling of hexagons, covering all of two dimensions, would be an
apeirohedron.

An apeirotope can be treated as þe surface of a hyperspace polytope. Þe faces of þis hypertope
become þe cells of þe apeirotope. Margins become walls. Þe hypersurface becomes a surcell.

A planotope has plane-mounted polytopes. While þis is essentially þe same as an apeirotope, it also
has a volume. A tiling of hexagons and þe half of all space it divides makes a planohedron.

An anglutope is a ‘mounted polytope as a corner’. A single vertex of a dodecahedron appears as þree
different corners, one for each pentagon. Þe idea of anglutopes generalise þis. It works in boþ directions:
a pentagon has five corners, and a vertex has þree pentagon-corners. Anglutope conveys þe sense of
incidence, or surtopes belonging to surtopes. A vertex may have incident faces, and such faces would
be described as þe vertex’s anglufaces. One might call an incidence matrix an anglutope matrix, wiþ
columns representing þe surtopes, and þe rows representing þe incident angulotopes.

A horotope is polytopes mounted on a horosphere or sphere þat has an infinite radius. In Euclidean
geometry, þis is a flat surface. In hyperbolic geometry, þis is a kind of sub-space þat has Euclidean
geometry. A tiling of hexagons, þree to a corner, would form a horohedron. Þe term horotope is
used to convey þe sense of Euclidean surface geometry in boþ Euclidean and Hyperbolic geometries. A
horosurtope is a surtope þat is centred on a horopoint, or point on þe horizon.

A bollotope is a polytope þat follows a bollosphere, or hyperbolic radius sphere. A bollosphere is also
called a pseudosphere or equidistant curve. Þe stem bollo- is derived from hyperbolic, in much þe same
way þat bus comes from omnibus. Pseudo means false. It already has active use in þis meaning, and it
does not well to overload it wiþ þe sense of hyperbolic. An equidistant curve is just a curve equidistant
from a straight line. A line of latitude is also an equidistant curve: it is equidistant from a straight
equator.
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 A glomotope is a polytope mounted to make a globe. What þis does is makes a single face wrap 
around to form a sphere. A glomohedron is þe shape we call in d a sphere. In higher dimensions, þere
are -spheres or glomochora, -spheres or glomotera, and so on. Sphere can þen refer to a solid sphere.
Þe glomotopes participate in all of þe polytope products. Even þough some do not hold þem to be
polytopes, it is useful to treat þem as polytopes just þe same. Þey even have þeir own Schlaffli symbol
allocated. A circle is {O}, a sphere is {O,O} and so on. A cylinder would be {}{O}, or a circular prism.
When a Wythoff style construction is applied, þis translates to shortening þe axis. A prolate ellipsoid
would become {;O,O;}, meaning þe first two axies are equal, and shorter þan þe þird, while an oblate
ellipsoid is {;O;O}, where þe first axis is shorter þan þe oþer equal pair.

. Wythoff, Stott and Dynkin
Wythoff and Mrs Stott are boþ associated wiþ discovering þe great bulk of uniform polytopes, more by
fait of having þe right notion, and filling in þe holes. Þe magic lies in þe notions.

Wythoff relied on mirror-edge polytopes, and semiates to fill in þe snubs. A mirror-edge polytope is
one where þe ends of every edge are images of each oþer in a bisecting mirror. Þe interesting þing is þat
edges do not have to be equal: every rectangular prism is a mirror-edged figure.

Given a mirror symmetry group, one can move þe vertex around in þe kaleidoscope, and look at þe
resulting figure. In þree dimensions, þe kaleidoscope has þree sides, þree corners and þe interior. Þis
gives up to seven mirror-edge figures for each group. Þese seven are completely realised in þe icosahedral
and octahedral groups, but þe tetrahedral gives only two.

Mrs Stott’s construction consists of moving surtopes inwards and outwards. Þis has þe potential to
create new faces. Imagine a cube covered by an elastic skin. If we grab þe faces, and pull þem out
(keeping þe same size), þe old edges and vertices will give rise to new faces. We can do þe same wiþ any
combination of vertex, edge and face, to give rise to seven figures per core figure, as before.

 Combining þe two gives rise to a fascinating idea. Consider þe mirror-group as some kind of 
bounding plane, raþer like an octant of þe Cartesian system. Þis is in fact, þe case for þe group {,}.
When we move a point around, it moves around in all of þe oþer ‘octants’ as well, as if reflected in þe
walls. Mrs Stott’s construction corresponds to moving þe vertex parallel to an axis. Þe resulting axial
system can be treated as a coordinate system, and þe vertex as þe apex of a position-vector.

Þe coordinates are set, so þat a unit along an axis corresponds to unit elevation off þe opposite face:
þis makes þe points like (,,) correspond to a mirror-edge polytope of edge . Þe lengþ of þis vector
corresponds to þe circum-diameter of þe unit-edged figure.

In a sloping axis system, þe way one finds þe lengþ is to use a matrix-dot. Þis is done in þe same
way as a dot product, but one of þe two vectors is pre-multiplied by a matrix. Þe matrix used for
þis calculation is þe Stott matrix, of which we shall comment furþer. Stott matricies can be used for
hyperbolic groups as well, þis will continue to give þe edge of þe resulting hyperbolic tiling. Þe value
given is sinh(R/L), where R is þe radius of space, and L is þe true lengþ of þe edge.

Dynkin’s contribution was to provide a multi-dimensional notation for Wythoff’s mirror-edge construc-
tion. Þe much-used Wythoff symbol assumes þat a mirror is opposite an angle, a feature not replicated
in higher dimensions.

Þe Dynkin symbol is a graphical affair, not suited for use in running text. It is very useful for þe
higher dimensions. One of þe first þings I did wiþ it is to set it to running text, and greatly extend þe
versatility of it.

We can construct þe Dynkin symbol in terms of a matrix. Þe diagonal elements of þe matrix are set
to , while þe value for D(i,j) is -cos(ij). Þe product of þe Dynkin and Stott matrix is  I.

Þe Dynkin symbol represents mirrors by points (nodes), and þe angles between þese mirrors by edges
(branches). Branches are only drawn if þe angle between þem is someþing oþer þan a right-angle. Þe
most common drawn branch is a ‘’ branch: þe convention is þat drawn unmarked branches reflect at
deg . For a regular figure, þe Dynkin symbol is a chain. Þis is easy to represent in text, because a
chain can be made to lie down. For example, @––o––o would represent an icosahedron. But þe dashes
are entirely superfluous, and one could write @oo or, x3o5o. Since þis also corresponds closely to þe
Schlafli symbol, one could write {;,,}.

 Not all of þe groups derive from regular polytopes. Þe way around þis is to make þe symbol 
represent a ‘trace’, or pseudo-regular figure. Þis is done by making some branches connect to a node
furþer back or furþer ahead. In oGoEo3x3oAoBoCo, all of þe branches connect þe outer o node to þe x
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node. Þe B branch is a ‘þird-subject node’. A branch connects a subject to an object. Þe subject of þe
B branch is x, þe object is þe o following þe B. Since þe x node is þree back, it is a þird-subject. Þese
branches suffice to discuss all þe hyperbolic groups where þe simplex has finite content.

Þe special node z is used to indicate a return to þe front of þe chain. In þe trace, it is still counted
separately for þe counting to find þe subjects and object nodes. A group A, represented by a pentagon of
branches, might be written as o3o3o3o3o3z. In þe Schlafli symbol, it appears as a colon, eg {,,,,:}.

In þe interests of symmetry, a mirror-margin figure is one where every margin lies in a mirror-plane.
Þis is represented by þe m node. Where an m node appears, þe wall of þe kaleidoscope is part of some
margin. Þe neat feature is þat one can dualise by swapping x and m. A cuboctahedron is o3x4o, þe dual
is a rhombic dodecahedron o3m4o.

Alþough figures can be boþ mirror-edged and mirror-margined, þe correct style is to show only one.
A cube is boþ x4o3o and o4o3m, but not x4o3m. Þe reason for þis is þat when applied across þe direct
product &, þe x node implies a prism product, and þe m implies a tegum product. So x4o3o&x5o is
a prism product of a cube and a pentagon, while oom&om is þe same cube and pentagon in tegum
product.

Circles and spheres can be treated in þe same way as well. A circle is xOo, þe higher dimensions
effected by adding furþer Oo segments. So an xOoOoOo looks like a polychoron, and has O segments, so
must be a glomochoron, or -dimensional sphere. Someþing like xOo&x is a circular prism, or cylinder.
In four dimensions, we can have xOo&x5o, a circle-pentagon prism.

. Laceland – Antiprisms and Antitegums
 Kepler described among þe uniform figures an infinite family of figures called antiprisms. Þese are 
a kind of prism, where þe edge of one base corresponds to þe vertex of þe oþer. Triangles, not squares,
form þe sides. From higher dimensions, two important þreads pass þrough here. One of þese makes þe
pentagonal antiprism into a semiated decagonal prism: þat is, what one gets by removing alternating
vertices of a decagonal prism. Semiation splits furþer into finer þreads, so it is useful to deal wiþ semiates
by new names.

An antiprism resembles some kind of drum, where þe top and bottom are tied togeþer wiþ lacing.
In higher dimensions, þe name of antiprism is allocated to a similar kind of prism-like þing where þe
top and bottom bases are duals. Þe side faces are pyramid products of surtopes and þe corresponding
orþosurtope.

Þe idea of different-style top and bottom can be taken furþer. One can do þis sort of lacing to generate
in þree dimensions, prisms, antiprisms, pyramids, and cupolae. Þe notion is þat þe surtopes of one face
must systematically descend into surtopes of þe oþer.

One can use two Wythoff mirror-edge figures from þe same symmetry as þe bases. When þis is done,
þe side faces potentially appear at each of þe nodes, being þe lace-prism formed by all of þe remaining
nodes. Lace-prisms are useful, since þe vertex figure of any Wythoff-mirror-edge figure is a lace prism
wiþ as many bases as þe figure has maked nodes.

Þe symbol for a Wythoff lacing-prism is to write þe top and bottom in sequence, and apply þe
zp&#x sequence at þe end. So a dodecahedron truncated-dodecahedron lacing-prism combines x5o3o

wiþ x5x3o, as xx5xo3oo&#x. An antiprism is simply þe lace-prism of a figure and its dual: for example,
þe cuboctahedral antiprism has as þe top, o3x4o and as a base, o3m4o. Þe lace-prism is oo3xm4oo&#x.

For convex figures, we can describe a lace-prism as þe convex hull, when þe two bases are placed in
parallel planes, sharing a common centre-perpendicular.

Þe dual of a lace-prism is a lace-tegum. Þis figure has its own description outside of saying ‘dual
of’. . . One places þe two bases, and constructs pyramids, so þat þe apex of one base is in þe centre of
þe oþer. Þe lace-tegum is þe common intersection. If þe resulting pyramid is not solid, þen it is made
solid by extension in þe perpendicular. For example, if a pyramid is only in þe x-y plane, it is extended
þroughout þe values for z by way of a Cartesian product.

 Þe antitegum, þe dual of þe antiprism, has every surtope an antitegum. An example of an 
antitegum is þe measure-polytope, where every surtope is a simplex antitegum: lines, squares, cubes,
tesseracts. But þis holds true for all antitegums. Þis is because each face of an antitegum is formed by
þe antitegum on þe face and þe dual of þe face.

An interesting figure one can create is an antitegmal cluster. Take any polytope, for example a
dodecahedron. Each of its faces forms a pyramid radiating from þe centre of þe figure. We use each of
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þese as one of þe two lacing-pyramids. Þe second lacing pyramid is formed over þe surface of þe figure.
Þis replaces each face by its antitegum. Þe inwards-pointing faces are not seen, and all þat is seen is a
apex of antitegums forming þe second lacing-pyramid. Þe axies of þe exposed faces connect þe vertices
of þe dodecahedron wiþ þe vertices of þe icosahedron. Þe antitegmal cluster of a figure is þe same as þat
of þe dual, and þe whole surface is bounded by antitegums.

Þe most interesting of þe antitegmal clusters is þe one formed on þe simplex. Complete wiþ þe innards,
it is what happens when a measure-polytope is squashed so þat þe long axis is zero. Þe shape tiles space
wiþ relatively high efficiency, þe dual tiling being one of a -degree rhombic tiling wiþ additional planes
perpendicular to þe long axis.

An example of þis is þe digonal antitegum xoox&#m. Suppose þe axis runs in þe z direction. We
construct a line pyramid (or triangle) in þe x-z plane, and a second, inverted line-pyramid in þe y-z plane.
Were þese not completed, all we would see is þe common intersection in þe z-axis. So þe line-pyramid in
þe x-z plane exists for all values of y, and þe y-z plane exists for all values of x. Þe common intersection
is þe space held between two vees of planes, which form pairs of faces of þe tetrahedron.

Þe dual of a lace-prism is þe lace-tegum, in terms of þe symbols, a matter of swapping x and m where
þey occur.

 Lace-prisms and lace-tegums can have any number of bases. When one projects a lace prism 
perpendicular to all of its bases, þe bases appear as þe vertices of a simplex. Þe base and apex of a
normal pyramid would project as þe ends of þe line representing þe altitude. Lacing-edges would project
as edges of þe altitude simplex, one for each kind of lacing. An example of a þree-based lace-prism is
oxx&#x. Þis is a square pyramid. Þe þree bases are þe apex and þe norþ-souþ edges of þe base. Þe
east-west edges, and þe sloping edges are different sets of lacing.

Laceland can be used wiþ tilings as well. Alþough prism-products in general can not be applied to
bollotopes (hyperbolic type polytopes), we can still consider lacing layers, eiþer between þe same, or
different bollotope surfaces. For example, one can make a layer of triangular prisms by xxoooo&#x.
One can fill laminatopes wiþ laceland style fillings. Laminatopes are discussed furþer on.

Þe vertex figure of any Wythoff mirror-edge figure is a lace-prism. It is quite possible to discuss þe
vertex figure of x3o4o3x in terms of a lace pyramid. It would become xo4ox&#x. Þe unmarked nodes
form þe transverse or base symmetry. Þe marked nodes correspond to þe apices of þe altitude. Each
apex is connected separely to þe bases.

For example, þe x3x3o3o3x3o is a six-dimensional figure, and has a five-dimensional vertex figure.
Þe transverse symmetry is oo&o. Þe altitude has þree vertices, forming a triangle. Each vertex of þe
altitude connects to þe nodes differently. Þe first has no connection, ie o3o&o. Þis makes a point. Þe
second connects to form a triangle, x3o3&o. Þe þird connects as o3x&x or triangle-prism. Þe resulting
lace-prism þen is oxo3oox&oox&#x. We see þat þis figure has a þree-dimensional transverse, and a
two-dimensional altitude, all togeþer, five dimensions.

Þe dual of þe vertex-figure is þe face of þe dual. We write straight away, þe face of m3m3o3o3m3o as
omo3oom&oom&#m. Þis þree-based lace-tegum is constructed in þe same way as þe two-based versions
above, but is þe intersection of þree pyramids.

. Semiates
Þe idea of semiates derives from removal of alternate vertices of a figure. A tetrahedron is a half-cube, for
example. Semiation can be applied to higher values þan two. For example, þe semiated pentagon-penta-
gram prism is a regular figure called a pentachoron. What happens is þat one reduces þe vertices of a
pentagon-pentagram prism so þat only one-fifþ of þe vertices remain.

 Semiation becomes more complex when þere are more axies to pick from. Þis happens for þe 
first time in six dimensions, where we see þe þreads on step-prisms and mod-prisms separate.

Þe notion behind semiates is þat one can number þe vertices systematically. When one takes a product
of two or þree such numbered polytopes, one forms an array (p,q) or (p,q,r). Þe idea of semiation is þat
one removes all þose p,q which do not agree to some furþer restriction. For example, one might only
want p and q equal, or þe sum to be a multiple of some value. If þe vertices are kept, þe result is a prism.
If þe face-planes are kept, þe result is a tegum.

In four dimensions, one finds þe polygon-polygon prism. Þe vertices of a polygon can be numbered
from  to p. In a polygon-polygon prism, þis gives a set of p2 points, running from , to p,p. What
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would happen, if we make þese keep in step? Þe result is a large polygon. Instead of keeping in step, we
can rotate one twice or x times faster þan þe oþer.

When p is a sum of two squares, such as  or , interesting þings happen. Þe , bipentagon
step prism is noþing more þan þe pentachoron. Þe , bi- step tegum becomes a raþer interesting
polychoron, bounded by  identical sides. Þe matching step-prism has at least four vertices equidistant
from þe central one. In six dimensions, þe triple-product of polygons can be reduced in different ways.
A step polygon makes everyþing step togeþer, giving a polypeton wiþ p vertices. Þe -- tri-heptagon
step-prism is þe simplex in seven dimensions.

If one makes one dependent on þe oþer two, for example x+y+z= mod p, þen one has a polypeton
wiþ p2 vertices. For example, þe -- tri-heptagon mod-prism contains þe vertices of seven separate
simplexes, for a total of  vertices.

Mod-prisms and mod-tegums get used in tilings as well. Þe body-centred-cubic can be viewed as a
step-prism over modulo . In higher dimensions, one can use  or  in þis place. Þe famous gosset-lattice
in six dimensions can be constructed as step-prism over modulo , of a tri-hexagonal lattice, where
þe þree numbered points are þe vertices, þe centres of þe up-pointing triangles, and þe centres of þe
down-pointing triangles. Þe corresponding mod-prism would place additional vertices in þe centres of þe
cells of þe {,,,,B,}. Þis would make þe vertices of oomooBoo, a tiling of tri-triangular tegums,
 to a vertex.

. Laminatopes
 A laminatope is a polytope bounded by unbounded faces. An example of a laminatope is a layer. Þe 
main use for laminatopes is to fill þem wiþ cells, and treated as a module for finding tilings. In Euclidean
space, þe layers are usually lace-prisms of tilings.

For example, xx3oo3oo3z&#x is a layer of triangular prisms. Þe xo3ox3oo3z&#x is an oct-tet layer.
Þe etchings on boþ sides of þis are x3o3o3z, a tiling of triangles. One can þen stack þese in all sorts
of systematic orders to produce several different uniform tilings. For example, þe oct-tet layers could
advance, so þat xo3ox3oo3z&#x is stacked on top of oo3xo3ox3z&#x. Þis advances þe layer one step,
producing a repeat after þree layers. Alternately, one could treat þe top surface as a mirror, and have
layers of xo3ox3oo3z&#x and ox3xo3oo3z&#x. Þis tiling gives þe hexagonal close pack.

Þe great search for uniform tilings centre on finding and sifting þrough þe assorted laminate tilings.
Many of þe non-Wythoffian hyperbolic tilings are laminate as well.

. Þe known uniform hyperbolic tilings
Þere are an infinite number of uniform bollohedra. John Conway and Chiam Goodman-Strauss have
some generalised process for locating þese. Wiþout þeir notation, þe process is a relative nightmare,
since any given polygon in a vertex-figure can be replaced by a laminagon, and any two tilings can be
merged.

Of þe bollochora and higher, þe picture is relatively simpler, alþough by no means complete. Þere
are fourteen finite-extent groups in þree and four dimensional tilings. Þese and a few star-groups, give
rise by Wythoff mirror-edge construction to many of þe known tilings.

Þere is an infinite family of borromeachora. For every polygon, except þe square, one can create þe
matching borromeachoron. Þe heptagonal version has a dozen heptagonal prisms and eight cubes at each
vertex. Þe vertex figure is an icosahedron, where þe six edges parallel to þe axial systems represent a
{p}, and þe remaining  edges þat form þe eight triangles are squares. We see in þe case of þe square
borromeachoron, þe result is þe {,,}.

 Þere is also a scattered list of oþers. 
One example is a partial truncation of þe {,,}. If selected vertices and attached edges are removed,

þese vertices become dodecahedra, and þe icosahedra become pentagonal antiprisms. Þe vertex figure
becomes a tetrahedrally truncated dodecahedron, wiþ four dodecahedra and twelve pentagonal antiprisms
at a vertex.

A second example is þe laminatruncated {,,}. Þe normal truncate produces an x4x3o8o, which
has cells x4x3o ‘truncated cube’, and x3o8o. Þe x3o8o is not only infinite, but in þis case, a planohedron,
when þe edges are equal. Þe surface can þen be used as a mirror, to fill þe whole of space wiþ truncated
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cubes,  at a vertex. Þe vertex figure is an octagonal tegum, formed by rotating an octahedron by
deg around an axis.

Þe þird known example is a development on o8o4xAx. In its primitive state, it has þree kinds of
cell: a planotope o8o4x, a curved o8o3x, and a rhombocuboctahedron x4o3x. Þe vertex figure is an
octagonal rostrum, a prism wiþ trapezoid sides. Þe o8o3x is þe right size and curvature to be part of an
oo8oo3xx&#x, an equilateral prismatic layer. Þis replaces þe smaller octagon of þe vertex figure wiþ a
cap of eight triangles. Þe base is completely flat, and can be used as a mirror. Þe resulting tiling has
 triangular prisms, and  rhombocuboctahedra at þe vertex. Þe vertex figure looks like a globe, wiþ
octagons forming þe equator, þe lines of longitude at deg steps, and a smaller octagon representing
degN and deg S. Wiþout þe two poles, þe þing can be made by rotating a cuboctahedron þrough
deg around þe axis þrough þe square-centres. One finds {,} formed by þe squares passing þrough
þe great circles, and {,} formed by þe octagons þat can be drawn inside þe rhombocuboctahedron, on
þe girþing hexagons of þe two inscribed cuboctahedra.

Of four-dimensional tilings, two are known, þese are duals of each oþer. Þe first consists of a tiling
of bi-truncated -chora o3x4x3o,  to a vertex. Þe þing derives from o3x4x3o8o, where þere are two
infinite cells x4x3o8o, and eight o3x4x3o at a vertex. Þe meeting-angle is smooþ, and can be used to
reflect þe deg angle occupied by þe o3x4x3o around. Þis fills all-space. Þe resulting vertex figure is
an octagon-octagon tegum, where  different x4x3o8o can be formed by one octagon, and an edge of þe
oþer. Þe cell walls are truncated cubes x4x3o, which form a laminatruncated {,,}. Þe octagons form
an {,}, and þe triangles a {,}.

 Þe dual is a tiling of bi-octagonal prisms, o8x2x8o, wiþ  to a vertex. Þe vertex figure is 
ommo, formed by placing equal-sized dual -chora togeþer, and covering þe lot wiþ þe convex hull:
 disphenoid tetrahedra. Þe squares form a tiling of {,}, and þe octagons form an {,}, but þere is
no þrough-passing of þree-dimensional cells.

 Þe Polygloss
Þe Polygloss is a dictionary designed to encompass all of þese concepts and more. Versions of it are
placed on þe web from time to time. One of þe problems for it is þat I have more words to describe þan
I have names for. Þere are many unnamed concepts þat scream out for one.

Many have interim names. What I describe here as lace-prisms is in þe Polygloss as exotic prisms.
Exotic is used elsewhere. An exotic polygon has coincident vertices. Þe more useful concepts get interim
names until þey get þeir final name. Many of þe oþers go by þe hand-waving names, like ‘þingie’.

For many years, þe tegum product was called þe octahedral product. Þe name does not fit well, but
it was important even for hand-waving, þat þe þing had its own name. Wiþ tegum fully placed as þe
dual of prism, it provides a much richer and distinct name for many oþer figures.

. Þe present terminology
Þe present terminology reflects þe origins of geometry in þe real world. It also carries useful concepts for
which I am presently attempting to replicate in þe Polygloss style. But it is in þe main, a lost cause, I
should imagine.

Þe same terminology in two dimensions carries across wiþout modification to þree. Þis seems to be
þe basis of some of þe alternate vocabularies. A face, for example is a two-dimensional element in þis
style. Oþer þings, like cells bound polychora.

While þis provides a seamless conversion between dimensions, what gets lost is þe auxiliary meanings.
Apart from being a two-dimensional þing, planes divide. Þe present terminology is skewed in favour of
þe uniting forms.

 Worse still, is þe same stem gets divided into diverse meanings. A face and a facet in þree dimen- 
sions, has þe same meaning. In four, a facet might have several faces. In þe Polygloss, a surface-mounted
polygon is a surhedron, always. It can act as a face or a margin, but it always is a surhedron. Face and
facet are þen counted amongst þe division-terms: a division between inside and outside.

Þe primary distinction in þe Polygloss is to preserve þe uniting or dividing nature of words, not þe
dimensionality. Þe whole þing is done in dual. A -edge under þe dual becomes a -margin.
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Whatever þe virtues of þe present notation is, it becomes a confusing and twisted maze when one tries
to extend it to higher dimensions. For þis reason, it was þought better to start afresh wiþ terminology
suited for a much higher dimension, and descend downwards. Þis is þe view from six dimensions.
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